Matching minors in bipartite graphs

In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of...

Full description

Saved in:
Bibliographic Details
Main Author: Wiederrecht, Sebastian (auth)
Format: Electronic Book Chapter
Language:English
Published: Berlin Universitätsverlag der Technischen Universität Berlin 2022
Series:Foundations of computing
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_87653
005 20220709
003 oapen
006 m o d
007 cr|mn|---annan
008 20220709s2022 xx |||||o ||| 0|eng d
020 |a depositonce-14958 
020 |a 9783798332522 
040 |a oapen  |c oapen 
024 7 |a 10.14279/depositonce-14958  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UMB  |2 bicssc 
100 1 |a Wiederrecht, Sebastian  |4 auth 
245 1 0 |a Matching minors in bipartite graphs 
260 |a Berlin  |b Universitätsverlag der Technischen Universität Berlin  |c 2022 
300 |a 1 electronic resource (476 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Foundations of computing 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of a cross over a conformal cycle by means of a topological property. Furthermore, we develope a theory for perfect matching width, a width parameter for graphs with perfect matchings introduced by Norin. here we show that the disjoint alternating paths problem can be solved in polynomial time on graphs of bounded width. Moreover, we show that every bipartite graph with high perfect matching width must contain a large grid as a matching minor. Finally, we prove an analogue of the we known Flat Wall theorem and provide a qualitative description of all bipartite graphs which exclude a fixed matching minor. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Algorithms & data structures  |2 bicssc 
653 |a matching minor; structural graph theory; bipartite; perfect matching 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/57270/1/wiederrecht_sebastian.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/87653  |7 0  |z DOAB: description of the publication