A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions

In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calc...

Full description

Saved in:
Bibliographic Details
Main Author: Marichal, Jean-Luc (auth)
Other Authors: Zenaïdi, Naïm (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2022
Series:Developments in Mathematics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_87685
005 20220714
003 oapen
006 m o d
007 cr|mn|---annan
008 20220714s2022 xx |||||o ||| 0|eng d
020 |a 978-3-030-95088-0 
020 |a 9783030950880 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-95088-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBKF  |2 bicssc 
072 7 |a PBKJ  |2 bicssc 
100 1 |a Marichal, Jean-Luc  |4 auth 
700 1 |a Zenaïdi, Naïm  |4 auth 
245 1 0 |a A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions 
260 |a Cham  |b Springer Nature  |c 2022 
300 |a 1 electronic resource (323 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Developments in Mathematics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory. 
536 |a Fonds National de la Recherche Luxembourg 
536 |a Université du Luxembourg 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Functional analysis & transforms  |2 bicssc 
650 7 |a Differential calculus & equations  |2 bicssc 
653 |a Difference Equation 
653 |a Higher Order Convexity 
653 |a Bohr-Mollerup's Theorem 
653 |a Principal Indefinite Sums 
653 |a Gauss' Limit 
653 |a Euler Product Form 
653 |a Raabe's Formula 
653 |a Binet's Function 
653 |a Stirling's Formula 
653 |a Euler's Infinite Product 
653 |a Euler's Reflection Formula 
653 |a Weierstrass' Infinite Product 
653 |a Gauss Multiplication Formula 
653 |a Euler's Constant 
653 |a Gamma Function 
653 |a Polygamma Functions 
653 |a Hurwitz Zeta Function 
653 |a Generalized Stieltjes Constants 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/57317/1/978-3-030-95088-0.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/87685  |7 0  |z DOAB: description of the publication