Deep Neural Networks and Data for Automated Driving Robustness, Uncertainty Quantification, and Insights Towards Safety

This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testi...

Full description

Saved in:
Bibliographic Details
Other Authors: Fingscheidt, Tim (Editor), Gottschalk, Hanno (Editor), Houben, Sebastian (Editor)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_87745
005 20220714
003 oapen
006 m o d
007 cr|mn|---annan
008 20220714s2022 xx |||||o ||| 0|eng d
020 |a 978-3-031-01233-4 
020 |a 9783031012334 
020 |a 9783031034893 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-01233-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TRC  |2 bicssc 
072 7 |a PBWH  |2 bicssc 
072 7 |a UYT  |2 bicssc 
072 7 |a UN  |2 bicssc 
100 1 |a Fingscheidt, Tim  |4 edt 
700 1 |a Gottschalk, Hanno  |4 edt 
700 1 |a Houben, Sebastian  |4 edt 
700 1 |a Fingscheidt, Tim  |4 oth 
700 1 |a Gottschalk, Hanno  |4 oth 
700 1 |a Houben, Sebastian  |4 oth 
245 1 0 |a Deep Neural Networks and Data for Automated Driving  |b Robustness, Uncertainty Quantification, and Insights Towards Safety 
260 |a Cham  |b Springer Nature  |c 2022 
300 |a 1 electronic resource (427 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Automotive technology & trades  |2 bicssc 
650 7 |a Mathematical modelling  |2 bicssc 
650 7 |a Image processing  |2 bicssc 
650 7 |a Databases  |2 bicssc 
653 |a Highly Automated Driving 
653 |a Autonomous Driving 
653 |a Environment Perception 
653 |a Deep Learning 
653 |a Safety 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/57375/1/978-3-031-01233-4.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/87745  |7 0  |z DOAB: description of the publication