Probabilistic Parametric Curves for Sequence Modeling
This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key adva...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | Électronique Chapitre de livre |
Langue: | anglais |
Publié: |
Karlsruhe
KIT Scientific Publishing
2022
|
Collection: | Karlsruher Schriften zur Anthropomatik
|
Sujets: | |
Accès en ligne: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation. |
---|---|
Description matérielle: | 1 electronic resource (226 p.) |
ISBN: | KSP/1000146434 9783731511984 |
Accès: | Open Access |