Probabilistic Parametric Curves for Sequence Modeling

This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key adva...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Hug, Ronny (auth)
Format: Électronique Chapitre de livre
Langue:anglais
Publié: Karlsruhe KIT Scientific Publishing 2022
Collection:Karlsruher Schriften zur Anthropomatik
Sujets:
Accès en ligne:DOAB: download the publication
DOAB: description of the publication
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation.
Description matérielle:1 electronic resource (226 p.)
ISBN:KSP/1000146434
9783731511984
Accès:Open Access