Probabilistic Parametric Curves for Sequence Modeling

This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key adva...

Full description

Saved in:
Bibliographic Details
Main Author: Hug, Ronny (auth)
Format: Electronic Book Chapter
Language:English
Published: Karlsruhe KIT Scientific Publishing 2022
Series:Karlsruher Schriften zur Anthropomatik
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_90637
005 20220803
003 oapen
006 m o d
007 cr|mn|---annan
008 20220803s2022 xx |||||o ||| 0|eng d
020 |a KSP/1000146434 
020 |a 9783731511984 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000146434  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYAM  |2 bicssc 
100 1 |a Hug, Ronny  |4 auth 
245 1 0 |a Probabilistic Parametric Curves for Sequence Modeling 
260 |a Karlsruhe  |b KIT Scientific Publishing  |c 2022 
300 |a 1 electronic resource (226 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Karlsruher Schriften zur Anthropomatik 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation. 
540 |a Creative Commons  |f by/4.0  |2 cc  |4 http://creativecommons.org/licenses/by/4.0 
546 |a English 
650 7 |a Maths for computer scientists  |2 bicssc 
653 |a Probabilistische Sequenzmodellierung 
653 |a Stochastische Prozesse 
653 |a Neuronale Netzwerke 
653 |a Parametrische Kurven 
653 |a Probabilistic Sequence Modeling 
653 |a Stochastic Processes 
653 |a Neural Networks 
653 |a Parametric Curves 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/57539/1/9783731511984.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/90637  |7 0  |z DOAB: description of the publication