Properties and Applications of Graphene and Its Derivatives
Graphene is a two-dimensional, one-atom-thick material made entirely of carbon atoms, arranged in a honeycomb lattice. Because of its distinctive mechanical (e.g., high strength and flexibility) and electronic (great electrical and thermal conductivities) properties, graphene is an ideal candidate i...
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_91227 | ||
005 | 20220812 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220812s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-4784-8 | ||
020 | |a 9783036547831 | ||
020 | |a 9783036547848 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-4784-8 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
072 | 7 | |a R |2 bicssc | |
100 | 1 | |a González-Domínguez, José Miguel |4 edt | |
700 | 1 | |a González-Domínguez, José Miguel |4 oth | |
245 | 1 | 0 | |a Properties and Applications of Graphene and Its Derivatives |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (378 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Graphene is a two-dimensional, one-atom-thick material made entirely of carbon atoms, arranged in a honeycomb lattice. Because of its distinctive mechanical (e.g., high strength and flexibility) and electronic (great electrical and thermal conductivities) properties, graphene is an ideal candidate in myriad applications. Thus, it has just begun to be engineered in electronics, photonics, biomedicine, and polymer-based composites, to name a few. The broad family of graphene nanomaterials (including graphene nanoplatelets, graphene oxide, graphene quantum dots, and many more) go beyond and aim higher than mere single-layer ('pristine') graphene, and thus, their potential has sparked the current Special Issue. In it, 18 contributions (comprising 14 research articles and 4 reviews) have portrayed probably the most interesting lines as regards future and tangible uses of graphene derivatives. Ultimately, understanding the properties of the graphene family of nanomaterials is crucial for developing advanced applications to solve important challenges in critical areas such as energy and health. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
650 | 7 | |a Earth sciences, geography, environment, planning |2 bicssc | |
653 | |a graphene oxide | ||
653 | |a electrochemical synthesis | ||
653 | |a oxidation level | ||
653 | |a exfoliation degree | ||
653 | |a morphology | ||
653 | |a interlayer spacing | ||
653 | |a surface defects | ||
653 | |a electrical resistance | ||
653 | |a graphene | ||
653 | |a mass production | ||
653 | |a shear exfoliation | ||
653 | |a physical exfoliation | ||
653 | |a superlattice | ||
653 | |a 2d materials | ||
653 | |a electrocatalytic | ||
653 | |a modified graphene nanoplates | ||
653 | |a graphene additives | ||
653 | |a antifriction | ||
653 | |a engine lubricant oil additives | ||
653 | |a antiwear | ||
653 | |a carbon nanofibers | ||
653 | |a reduced graphene oxide nanofibers | ||
653 | |a hydrothermal reduction | ||
653 | |a capacitance | ||
653 | |a amine | ||
653 | |a cryogel | ||
653 | |a CO2 capture | ||
653 | |a sol-gel | ||
653 | |a silico-phosphate composite films | ||
653 | |a optical limiting functionality | ||
653 | |a ultrashort laser pulses | ||
653 | |a carbon nanotubes | ||
653 | |a hot-filament CVD | ||
653 | |a field electron emission | ||
653 | |a laser machining | ||
653 | |a nanotechnology | ||
653 | |a graphene-derived materials | ||
653 | |a mud cake | ||
653 | |a rheology | ||
653 | |a effect of nanocomposites | ||
653 | |a fluid loss | ||
653 | |a water-based drilling fluids | ||
653 | |a cement composite | ||
653 | |a characterization | ||
653 | |a rheological | ||
653 | |a application | ||
653 | |a energy harvesting | ||
653 | |a α-lipoic acid | ||
653 | |a UV-VIS spectroscopy | ||
653 | |a SERS spectroscopy | ||
653 | |a thermal properties | ||
653 | |a electrical properties | ||
653 | |a strain sensing | ||
653 | |a joule heating | ||
653 | |a reduced graphene oxide | ||
653 | |a tissue regeneration | ||
653 | |a 2D-scaffolds | ||
653 | |a hydrogels | ||
653 | |a fibers | ||
653 | |a stem cell differentiation | ||
653 | |a cadmium sulphide | ||
653 | |a PVK | ||
653 | |a hybrid light-emitting device | ||
653 | |a electroluminescence | ||
653 | |a nanocrystals | ||
653 | |a graphite | ||
653 | |a few-layer graphene | ||
653 | |a Raman | ||
653 | |a TEM | ||
653 | |a UV-vis | ||
653 | |a Lorentzian fitting | ||
653 | |a nanocellulose | ||
653 | |a conductive inks | ||
653 | |a liquid-phase processing | ||
653 | |a film fabrication | ||
653 | |a sustainability | ||
653 | |a metal-free electrodes | ||
653 | |a graphyne-like materials | ||
653 | |a synthesis and doping | ||
653 | |a electronic and magnetic properties | ||
653 | |a electronic transport | ||
653 | |a photodetectors | ||
653 | |a reduce graphene oxide | ||
653 | |a dyes | ||
653 | |a heavy metals | ||
653 | |a pollutant removal | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/5873 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/91227 |7 0 |z DOAB: description of the publication |