Hybrid Systems for Marine Energy Harvesting
Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting tech...
Na minha lista:
Outros Autores: | , , , |
---|---|
Formato: | Recurso Electrónico Capítulo de Livro |
Idioma: | inglês |
Publicado em: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Assuntos: | |
Acesso em linha: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_91230 | ||
005 | 20220812 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220812s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-4628-5 | ||
020 | |a 9783036546278 | ||
020 | |a 9783036546285 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-4628-5 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
072 | 7 | |a TBX |2 bicssc | |
100 | 1 | |a Rosa-Santos, Paulo Jorge |4 edt | |
700 | 1 | |a Taveira Pinto, Francisco |4 edt | |
700 | 1 | |a López Gallego, Mario |4 edt | |
700 | 1 | |a Rodríguez Castillo, Claudio Alexis |4 edt | |
700 | 1 | |a Rosa-Santos, Paulo Jorge |4 oth | |
700 | 1 | |a Taveira Pinto, Francisco |4 oth | |
700 | 1 | |a López Gallego, Mario |4 oth | |
700 | 1 | |a Rodríguez Castillo, Claudio Alexis |4 oth | |
245 | 1 | 0 | |a Hybrid Systems for Marine Energy Harvesting |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (182 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Technologies to harvest marine renewable energies (MREs) are at a pre-commercial stage, and significant R&D progress is still required in order to improve their competitiveness. Therefore, hybridization presents a significant potential, as it fosters synergies among the different harvesting technologies and resources. In the scope of this Special Issue, hybridization is understood in three different manners: (i) combination of technologies to harvest different MREs (e.g., wave energy converters combined with wind turbines); (ii) combination of different working principles to harvest the same resource (e.g., oscillating water column with an overtopping device to harvest wave energy); or (iii) integration of harvesting technologies in multifunctional platforms and structures (e.g., integration of wave energy converters in breakwaters). This Special Issue presents cutting-edge research on the development and testing of hybrid technologies for harvesting MREs and intends to inform interested readers on the most recent advances in this key topic. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
650 | 7 | |a History of engineering & technology |2 bicssc | |
653 | |a vertical axisymmetric floaters | ||
653 | |a arbitrary shape | ||
653 | |a breakwater | ||
653 | |a diffraction and radiation problem | ||
653 | |a hydrodynamic characteristics | ||
653 | |a added mass | ||
653 | |a damping coefficient | ||
653 | |a marine renewable energy | ||
653 | |a wind energy | ||
653 | |a solar energy | ||
653 | |a resource assessment | ||
653 | |a hybrid energy systems | ||
653 | |a power take-off damping | ||
653 | |a wave power device | ||
653 | |a experimental testing | ||
653 | |a PTO simulator | ||
653 | |a uncertainty analysis | ||
653 | |a wave energy testing | ||
653 | |a experimental set-up | ||
653 | |a calibration | ||
653 | |a Computational Fluid Dynamics (CFD) modelling | ||
653 | |a physical model testing | ||
653 | |a Hybrid-Wave Energy Converter (HWEC) | ||
653 | |a composite modelling approach | ||
653 | |a Oscillating Water Column (OWC) | ||
653 | |a Overtopping Device (OTD) | ||
653 | |a multi-purpose breakwater | ||
653 | |a wave power | ||
653 | |a oscillating buoy | ||
653 | |a power generation performance | ||
653 | |a standing waves | ||
653 | |a experimental research | ||
653 | |a physical modelling | ||
653 | |a wave energy | ||
653 | |a breakwaters | ||
653 | |a safety | ||
653 | |a overtopping | ||
653 | |a stability | ||
653 | |a offshore wind energy | ||
653 | |a CECO | ||
653 | |a WindFloat Atlantic | ||
653 | |a co-located wind-wave farm | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/5876 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/91230 |7 0 |z DOAB: description of the publication |