Diseño e implementación de un sistema de monitoreo y adquisición de datos de parámetros eléctricos y ambientales de un sistema fotovoltaico conectado a la red de 3kW

In the present research work, a wireless monitoring and data acquisition system with an interface in LabVIEW was designed and implemented in real-time to monitor the electrical and environmental parameters of a 3kW SFCR. cable integrating devices such as a Raspberry pi 3B+, an Arduino Nano, using a...

Full description

Saved in:
Bibliographic Details
Main Author: Cruz, Edisson (auth)
Other Authors: Beltrán, Norman (auth), Condori, Reynaldo (auth)
Format: Electronic Book Chapter
Language:Spanish
Published: Puno Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_91498
005 20220825
003 oapen
006 m o d
007 cr|mn|---annan
008 20220825s2022 xx |||||o ||| 0|spa d
020 |a inudi.b.003 
020 |a 978-612-48813-2-9 
040 |a oapen  |c oapen 
024 7 |a 10.35622/inudi.b.003  |c doi 
041 0 |a spa 
042 |a dc 
072 7 |a THT  |2 bicssc 
100 1 |a Cruz, Edisson  |4 auth 
700 1 |a Beltrán, Norman  |4 auth 
700 1 |a Condori, Reynaldo  |4 auth 
245 1 0 |a Diseño e implementación de un sistema de monitoreo y adquisición de datos de parámetros eléctricos y ambientales de un sistema fotovoltaico conectado a la red de 3kW 
260 |a Puno  |b Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú  |c 2022 
300 |a 1 electronic resource (181 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In the present research work, a wireless monitoring and data acquisition system with an interface in LabVIEW was designed and implemented in real-time to monitor the electrical and environmental parameters of a 3kW SFCR. cable integrating devices such as a Raspberry pi 3B+, an Arduino Nano, using a 03 PT100 temperature sensor, a voltage divider as a voltage sensor, ACS758 current sensor, a calibrated cell as an irradiance sensor, and a graphics and storage interface From the data of a program developed in LabVIEW, the model and 3D printing of the pieces of the carcass can also be implemented, thus implementing a prototype with a DIN holder. Everything is oriented according to the IEC-61724-2017 standard. In the period of 05 days, it gives us the following results: Influence of the temperature in the photovoltaic module, in which we were able to observe that the temperatures of each cell in the module are not the same, having a deviation of up to 3C which it causes lost by dispersion of parameters. Influence of the temperature on the photovoltaic generator, in which we could observe that the temperature and the voltage in a photovoltaic system are inversely proportional, and when the hottest is a photovoltaic module is less efficient, in this section, temperatures up to 52.31C were recorded. the surface of the photovoltaic module. Influence of the irradiance on the photovoltaic generator, apart from which we observed that the irradiance and the generated current are directly proportional, events of extreme solar irradiance were also present, being higher and less prolonged on June 17, 2021, with a value of 1245.89[W/m2], a duration of 06 seconds, recorded at 11:39:13 and the longest, presented the same day, with a value of 1219.75[W/m2], a duration of 176 seconds recorded at 11:34:17 seconds. Finally, it is concluded that the indicators provided on the energy generated by the SFRC under certain environmental conditions are reliable due to the guidelines with the proposed standard, calibration, and validation of the readings of the sensors and other components used. 
520 |a En el presente trabajo de investigación se realizó el diseño e implementación de un sistema de monitoreo y adquisición de datos inalámbrico con un interfaz en LabVIEW en tiempo real para monitoreo de parámetros eléctricos en DC y ambientales de un SFCR de 3kW, El cual se llevó a cabo integrando dispositivos como un Raspberry pi 3B+, un Arduino Nano, usando como sensores de temperatura 03 PT100, como sensor de tensión un divisor de tensión, como sensor de corriente el ACS758, como sensor de irradiancia una celda calibrada y como interfaz gráfica y almacenamiento de datos un programa elaborado en LabVIEW, también se hizo el modelado e impresión en 3D de las piezas de la carcasa pudiendo así implementar un prototipo con un sujetador para riel DIN. Todo esto orientado bajo la norma IEC-61724-2017. En el periodo de prueba de 05 días nos entrega los siguientes resultados: Influencia de la temperatura en el módulo fotovoltaico, en el cual pudimos observar que las temperaturas de cada célula en el módulo no son iguales, teniendo una desviación de hasta 3C el cual ocasiona pérdidas por dispersión de parámetros. Influencia de la temperatura en el generador fotovoltaico, en el cual pudimos observar que la temperatura y la tensión en un sistema fotovoltaico son inversamente proporcionales y cuando más caliente esté un módulo fotovoltaico es menos eficiente, en este apartado se registró temperaturas de hasta 52.31C en la superficie del módulo fotovoltaico. Influencia de la irradiancia en el generador fotovoltaico, apartado en el cual observamos que la irradiancia y la corriente generada son directamente proporcionales, también se presentó eventos de irradiancia solar extrema, siendo el más alto y menos prolongado el día 17 de Junio del 2021, con un valor 1245.89[W/m2], una duración de 06 segundos, registrados a las 11:39:13 y el más prolongado, presentado el mismo día, con un valor de 1219.75[W/m2], una duración de 176 segundos registrados a las 11:34:17 segundos. Finalmente se concluye que los indicadores proporcionados sobre la energía generada por el SFRC bajo ciertas condiciones ambientales son confiables debido a lineamientos con la norma propuesta, calibración y validación de las lecturas de los sensores y demás componentes usados. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a Spanish 
650 7 |a Energy efficiency  |2 bicssc 
653 |a Sistema de Monitoreo 
653 |a Adquisición de Datos 
653 |a Sistema Fotovoltaico Conectado a la Red 
856 4 0 |a www.oapen.org  |u https://doi.org/10.35622/inudi.b.003  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/91498  |7 0  |z DOAB: description of the publication