Applied Mathematics and Fractional Calculus

In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbit...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Diğer Yazarlar: González, Francisco Martínez (Editör), Kaabar, Mohammed K. A. (Editör)
Materyal Türü: Elektronik Kitap Bölümü
Dil:İngilizce
Baskı/Yayın Bilgisi: Basel 2022
Konular:
Online Erişim:DOAB: download the publication
DOAB: description of the publication
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_92120
005 20220916
003 oapen
006 m o d
007 cr|mn|---annan
008 20220916s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-5147-0 
020 |a 9783036551487 
020 |a 9783036551470 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-5147-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
100 1 |a González, Francisco Martínez  |4 edt 
700 1 |a Kaabar, Mohammed K. A.  |4 edt 
700 1 |a González, Francisco Martínez  |4 oth 
700 1 |a Kaabar, Mohammed K. A.  |4 oth 
245 1 0 |a Applied Mathematics and Fractional Calculus 
260 |a Basel  |c 2022 
300 |a 1 electronic resource (438 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Mathematics & science  |2 bicssc 
653 |a condensing function 
653 |a approximate endpoint criterion 
653 |a quantum integro-difference BVP 
653 |a existence 
653 |a fractional Kadomtsev-Petviashvili system 
653 |a lie group analysis 
653 |a power series solutions 
653 |a convergence analysis 
653 |a conservation laws 
653 |a symmetry 
653 |a weighted fractional operators 
653 |a convex functions 
653 |a HHF type inequality 
653 |a fractional calculus 
653 |a Euler-Lagrange equation 
653 |a natural boundary conditions 
653 |a time delay 
653 |a MHD equations 
653 |a weak solution 
653 |a regularity criteria 
653 |a anisotropic Lorentz space 
653 |a Sonine kernel 
653 |a general fractional derivative of arbitrary order 
653 |a general fractional integral of arbitrary order 
653 |a first fundamental theorem of fractional calculus 
653 |a second fundamental theorem of fractional calculus 
653 |a ρ-Laplace variational iteration method 
653 |a ρ-Laplace decomposition method 
653 |a partial differential equation 
653 |a caputo operator 
653 |a fractional Fornberg-Whitham equation (FWE) 
653 |a Riemann-Liouville fractional difference operator 
653 |a boundary value problem 
653 |a discrete fractional calculus 
653 |a existence and uniqueness 
653 |a Ulam stability 
653 |a elastic beam problem 
653 |a tempered fractional derivative 
653 |a one-sided tempered fractional derivative 
653 |a bilateral tempered fractional derivative 
653 |a tempered riesz potential 
653 |a collocation method 
653 |a hermite cubic spline 
653 |a fractional burgers equation 
653 |a fractional differential equation 
653 |a fractional Dzhrbashyan-Nersesyan derivative 
653 |a degenerate evolution equation 
653 |a initial value problem 
653 |a initial boundary value problem 
653 |a partial Riemann-Liouville fractional integral 
653 |a Babenko's approach 
653 |a Banach fixed point theorem 
653 |a Mittag-Leffler function 
653 |a gamma function 
653 |a nabla fractional difference 
653 |a separated boundary conditions 
653 |a Green's function 
653 |a existence of solutions 
653 |a Caputo q-derivative 
653 |a singular sum fractional q-differential 
653 |a fixed point 
653 |a equations 
653 |a Riemann-Liouville q-integral 
653 |a Shehu transform 
653 |a Caputo fractional derivative 
653 |a Shehu decomposition method 
653 |a new iterative transform method 
653 |a fractional KdV equation 
653 |a approximate solutions 
653 |a Riemann-Liouville derivative 
653 |a concave operator 
653 |a fixed point theorem 
653 |a Gelfand problem 
653 |a order cone 
653 |a integral transform 
653 |a Atangana-Baleanu fractional derivative 
653 |a Aboodh transform iterative method 
653 |a φ-Hilfer fractional system with impulses 
653 |a semigroup theory 
653 |a nonlocal conditions 
653 |a optimal controls 
653 |a fractional derivatives 
653 |a fractional Prabhakar derivatives 
653 |a fractional differential equations 
653 |a fractional Sturm-Liouville problems 
653 |a eigenfunctions and eigenvalues 
653 |a Fredholm-Volterra integral Equations 
653 |a fractional derivative 
653 |a Bessel polynomials 
653 |a Caputo derivative 
653 |a collocation points 
653 |a Caputo-Fabrizio and Atangana-Baleanu operators 
653 |a time-fractional Kaup-Kupershmidt equation 
653 |a natural transform 
653 |a Adomian decomposition method 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5997  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/92120  |7 0  |z DOAB: description of the publication