The Cortex and the Critical Point Understanding the Power of Emergence

How the cerebral cortex operates near a critical phase transition point for optimum performance. Individual neurons have limited computational powers, but when they work together, it is almost like magic. Firing synchronously and then breaking off to improvise by themselves, they can be paradoxicall...

Full description

Saved in:
Bibliographic Details
Main Author: Beggs, John M. (auth)
Format: Electronic Book Chapter
Language:English
Published: Cambridge The MIT Press 2022
Series:The MIT Press
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_93164
005 20221025
003 oapen
006 m o d
007 cr|mn|---annan
008 20221025s2022 xx |||||o ||| 0|eng d
020 |a mitpress/13588.001.0001 
020 |a 9780262370349 
020 |a 9780262544030 
040 |a oapen  |c oapen 
024 7 |a 10.7551/mitpress/13588.001.0001  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSAN  |2 bicssc 
072 7 |a PHVS  |2 bicssc 
072 7 |a UYQN  |2 bicssc 
100 1 |a Beggs, John M.  |4 auth 
245 1 0 |a The Cortex and the Critical Point  |b Understanding the Power of Emergence 
260 |a Cambridge  |b The MIT Press  |c 2022 
300 |a 1 electronic resource (216 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The MIT Press 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a How the cerebral cortex operates near a critical phase transition point for optimum performance. Individual neurons have limited computational powers, but when they work together, it is almost like magic. Firing synchronously and then breaking off to improvise by themselves, they can be paradoxically both independent and interdependent. This happens near the critical point: when neurons are poised between a phase where activity is damped and a phase where it is amplified, where information processing is optimized, and complex emergent activity patterns arise. The claim that neurons in the cortex work best when they operate near the critical point is known as the criticality hypothesis. In this book John Beggs-one of the pioneers of this hypothesis-offers an introduction to the critical point and its relevance to the brain. Drawing on recent experimental evidence, Beggs first explains the main ideas underlying the criticality hypotheses and emergent phenomena. He then discusses the critical point and its two main consequences-first, scale-free properties that confer optimum information processing; and second, universality, or the idea that complex emergent phenomena, like that seen near the critical point, can be explained by relatively simple models that are applicable across species and scale. Finally, Beggs considers future directions for the field, including research on homeostatic regulation, quasicriticality, and the expansion of the cortex and intelligence. An appendix provides technical material; many chapters include exercises that use freely available code and data sets. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Neurosciences  |2 bicssc 
650 7 |a Cryogenics  |2 bicssc 
650 7 |a Neural networks & fuzzy systems  |2 bicssc 
653 |a Critical point 
653 |a Phase transition 
653 |a Cortex 
653 |a Neuronal avalanche 
653 |a Power law 
653 |a Homeostasis 
653 |a Optimality 
653 |a Universality 
653 |a Epilepsy 
653 |a Neural network 
653 |a Computational neuroscience 
653 |a Neuroscience 
653 |a Information theory 
653 |a Electrophysiology. 
856 4 0 |a www.oapen.org  |u https://doi.org/10.7551/mitpress/13588.001.0001  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/93164  |7 0  |z DOAB: description of the publication