Electronic Nanodevices

The start of high-volume production of field-effect transistors with a feature size below 100 nm at the end of the 20th century signaled the transition from microelectronics to nanoelectronics. Since then, downscaling in the semiconductor industry has continued until the recent development of sub-10...

Full description

Saved in:
Bibliographic Details
Other Authors: Bartolomeo, Antonio (Editor)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_93168
005 20221025
003 oapen
006 m o d
007 cr|mn|---annan
008 20221025s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-5022-0 
020 |a 9783036550213 
020 |a 9783036550220 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-5022-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Bartolomeo, Antonio  |4 edt 
700 1 |a Bartolomeo, Antonio  |4 oth 
245 1 0 |a Electronic Nanodevices 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (240 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The start of high-volume production of field-effect transistors with a feature size below 100 nm at the end of the 20th century signaled the transition from microelectronics to nanoelectronics. Since then, downscaling in the semiconductor industry has continued until the recent development of sub-10 nm technologies. The new phenomena and issues as well as the technological challenges of the fabrication and manipulation at the nanoscale have spurred an intense theoretical and experimental research activity. New device structures, operating principles, materials, and measurement techniques have emerged, and new approaches to electronic transport and device modeling have become necessary. Examples are the introduction of vertical MOSFETs in addition to the planar ones to enable the multi-gate approach as well as the development of new tunneling, high-electron mobility, and single-electron devices. The search for new materials such as nanowires, nanotubes, and 2D materials for the transistor channel, dielectrics, and interconnects has been part of the process. New electronic devices, often consisting of nanoscale heterojunctions, have been developed for light emission, transmission, and detection in optoelectronic and photonic systems, as well for new chemical, biological, and environmental sensors. This Special Issue focuses on the design, fabrication, modeling, and demonstration of nanodevices for electronic, optoelectronic, and sensing applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a concentrator systems 
653 |a GaInP/GaInAs/Ge 
653 |a multi-junction 
653 |a photovoltaics 
653 |a solar cells 
653 |a space 
653 |a triple-junction 
653 |a FeFET 
653 |a ferroelectric 
653 |a nonvolatile 
653 |a semiconductor memory 
653 |a SBT 
653 |a nanoantennas 
653 |a optics 
653 |a optoelectronic devices 
653 |a photovoltaic technology 
653 |a rectennas 
653 |a resistive memories 
653 |a thermal model 
653 |a heat equation 
653 |a thermal conductivity 
653 |a circuit simulation 
653 |a compact modeling 
653 |a resistive switching 
653 |a nanodevices 
653 |a power conversion efficiency 
653 |a MXenes 
653 |a electrodes 
653 |a additives 
653 |a HTL/ETL 
653 |a design of experiments 
653 |a GFET 
653 |a graphene 
653 |a high-frequency 
653 |a RF devices 
653 |a tolerance analysis 
653 |a molybdenum oxides 
653 |a green synthesis 
653 |a biological chelator 
653 |a additional capacity 
653 |a anodes 
653 |a lithium-ion batteries 
653 |a carbon nanotube 
653 |a junctionless 
653 |a tunnel field effect transistors 
653 |a chemical doping 
653 |a electrostatic doping 
653 |a NEGF simulation 
653 |a band-to-band tunneling 
653 |a switching performance 
653 |a nanoscale 
653 |a phosphorene 
653 |a black phosphorus 
653 |a nanoribbon 
653 |a edge contact 
653 |a contact resistance 
653 |a quantum transport 
653 |a NEGF 
653 |a metallization 
653 |a broadening 
653 |a zigzag carbon nanotube 
653 |a armchair-edge graphene nanoribbon 
653 |a quantum simulation 
653 |a sub-10 nm 
653 |a phototransistors 
653 |a photosensitivity 
653 |a subthreshold swing 
653 |a GaN HEMTs 
653 |a scaling 
653 |a electron mobility 
653 |a scattering 
653 |a polarization charge 
653 |a 2D materials 
653 |a rhenium 
653 |a selenides 
653 |a ReSe2 
653 |a field-effect transistor 
653 |a pressure 
653 |a negative photoconductivity 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6064  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/93168  |7 0  |z DOAB: description of the publication