Remote Sensing of Land Surface Phenology

Land surface phenology (LSP) uses remote sensing to monitor seasonal dynamics in vegetated land surfaces and retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.). LSP has developed rapidly in the last few decades. Both regional and global LSP products have been ro...

Full description

Saved in:
Bibliographic Details
Other Authors: Ma, Xuanlong (Editor), Jin, Jiaxin (Editor), Zhu, Xiaolin (Editor), Zhou, Yuke (Editor), Xie, Qiaoyun (Editor)
Format: Electronic Book Chapter
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_93215
005 20221025
003 oapen
006 m o d
007 cr|mn|---annan
008 20221025s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-5326-9 
020 |a 9783036553252 
020 |a 9783036553269 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-5326-9  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a TQ  |2 bicssc 
100 1 |a Ma, Xuanlong  |4 edt 
700 1 |a Jin, Jiaxin  |4 edt 
700 1 |a Zhu, Xiaolin  |4 edt 
700 1 |a Zhou, Yuke  |4 edt 
700 1 |a Xie, Qiaoyun  |4 edt 
700 1 |a Ma, Xuanlong  |4 oth 
700 1 |a Jin, Jiaxin  |4 oth 
700 1 |a Zhu, Xiaolin  |4 oth 
700 1 |a Zhou, Yuke  |4 oth 
700 1 |a Xie, Qiaoyun  |4 oth 
245 1 0 |a Remote Sensing of Land Surface Phenology 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (276 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Land surface phenology (LSP) uses remote sensing to monitor seasonal dynamics in vegetated land surfaces and retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.). LSP has developed rapidly in the last few decades. Both regional and global LSP products have been routinely generated and play prominent roles in modeling crop yield, ecological surveillance, identifying invasive species, modeling the terrestrial biosphere, and assessing impacts on urban and natural ecosystems. Recent advances in field and spaceborne sensor technologies, as well as data fusion techniques, have enabled novel LSP retrieval algorithms that refine retrievals at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Meanwhile, rigorous assessment of the uncertainties in LSP retrievals is ongoing, and efforts to reduce these uncertainties represent an active research area. Open source software and hardware are in development, and have greatly facilitated the use of LSP metrics by scientists outside the remote sensing community. This reprint covers the latest developments in sensor technologies, LSP retrieval algorithms and validation strategies, and the use of LSP products in a variety of fields. It aims to summarize the ongoing diverse LSP developments and boost discussions on future research prospects. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Environmental science, engineering & technology  |2 bicssc 
653 |a climate change 
653 |a digital camera 
653 |a MODIS 
653 |a Mongolian oak 
653 |a phenology 
653 |a sap flow 
653 |a urbanization 
653 |a plant phenology 
653 |a spatiotemporal patterns 
653 |a structural equation model 
653 |a Google Earth Engine 
653 |a Three-River Headwaters region 
653 |a GPP 
653 |a carbon cycle 
653 |a arctic 
653 |a photosynthesis 
653 |a remote sensing 
653 |a crop sowing date 
653 |a development stage 
653 |a yield gap 
653 |a yield potential 
653 |a process-based model 
653 |a land surface temperature 
653 |a urban heat island effect 
653 |a contribution 
653 |a Hangzhou 
653 |a land surface phenology 
653 |a NDVI 
653 |a spatiotemporal dynamics 
653 |a different drivers 
653 |a random forest model 
653 |a data suitability 
653 |a satellite data 
653 |a spatial scaling effects 
653 |a the Loess Plateau 
653 |a autumn phenology 
653 |a turning point 
653 |a climate changes 
653 |a human activities 
653 |a Qinghai-Tibetan Plateau 
653 |a snow phenology 
653 |a driving factors 
653 |a spatiotemporal variations 
653 |a Northeast China 
653 |a vegetation indexes 
653 |a seasonally dry tropical forest 
653 |a vegetation phenology 
653 |a climatic limitation 
653 |a solar-induced chlorophyll fluorescence 
653 |a enhanced vegetation index 
653 |a gross primary production 
653 |a evapotranspiration 
653 |a water use efficiency 
653 |a NDPI 
653 |a Qilian Mountains 
653 |a snow cover 
653 |a high elevation 
653 |a soil moisture 
653 |a vegetation dynamics 
653 |a carbon exchange 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6113  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/93215  |7 0  |z DOAB: description of the publication