EPR Effect-Based Tumor Targeted Nanomedicine

I am honored to undertake the work for Guest Editor for this Special Issue of EPR Effect-Based Tumor Targeted Nanomedicine for the Journal of Personalized Medicine. It has already been 35 years since we published the concept of the EPR effect for the first time. The discovery of the new concept of E...

Full description

Saved in:
Bibliographic Details
Other Authors: Maeda, Hiroshi (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_93797
005 20221117
003 oapen
006 m o d
007 cr|mn|---annan
008 20221117s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-5427-3 
020 |a 9783036554273 
020 |a 9783036554280 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-5427-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
072 7 |a MJCL  |2 bicssc 
100 1 |a Maeda, Hiroshi  |4 edt 
700 1 |a Maeda, Hiroshi  |4 oth 
245 1 0 |a EPR Effect-Based Tumor Targeted Nanomedicine 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (290 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a I am honored to undertake the work for Guest Editor for this Special Issue of EPR Effect-Based Tumor Targeted Nanomedicine for the Journal of Personalized Medicine. It has already been 35 years since we published the concept of the EPR effect for the first time. The discovery of the new concept of EPR effect gave an impetus effect of growth momentum in nanomedicine, and numerous works are focused on tumor delivery, although the initial idea was based on vascular permeability in infection-induced inflamed tissue, where we discovered bradykinin in the key mediator of vascular permeability.I know, however, there are pros and cons to EPR effect. Cons stem either from a poor understanding of EPR effect, or somehow a biased view of the EPR effect, or from the tumor models being used, particularly in the clinical settings where vascular blood flow is so frequently obstructed. I hope scientists in the clinic, or basic researchers working on the tumor drug delivery, will join the forum of this Special Issue and express their data and opinions.The scope of this issue includes an in-depth understanding of the EPR effect, and issues associated with tumor microenvironment and also further exploitation of EPR effect in human cancer. In addition, new strategies for enhancement of the EPR effect using nanomedicine will be welcome, which is as important as the EPR effect itself. These papers cover not only cancer therapy, but also imaging techniques using nanofluorescent agents, including photodynamic therapy for inflammation, and boron neutron capture therapy. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
650 7 |a Oncology  |2 bicssc 
653 |a extracellular matrix 
653 |a drug delivery 
653 |a tumor 
653 |a cancer 
653 |a targeting 
653 |a reactive oxygen species 
653 |a antioxidant 
653 |a self-assembling drug 
653 |a HPMA copolymers 
653 |a EPR effect 
653 |a controlled release 
653 |a nanomedicines 
653 |a nanoparticles 
653 |a tumor vascular regulation 
653 |a angiogenesis 
653 |a blood perfusion 
653 |a vascular permeability 
653 |a tumor targeting 
653 |a photodynamic 
653 |a hyaluronan 
653 |a zinc protoporphyrin 
653 |a enhanced permeability and retention effect 
653 |a cancer therapy 
653 |a nanotechnology 
653 |a tumor-selective drug delivery 
653 |a photodynamic therapy 
653 |a boron neutron capture therapy 
653 |a isosorbide dinitrate 
653 |a sildenafil citrate 
653 |a EPR-effect enhancers 
653 |a heterogeneity of the EPR effect 
653 |a nitric oxide donors 
653 |a tumor blood flow 
653 |a TNBC 
653 |a dasatinib 
653 |a poly(styrene-co-maleic acid) micelles 
653 |a nanoformulation 
653 |a metabolism 
653 |a EPR 
653 |a nanomedicine 
653 |a targeted therapy 
653 |a solid cancer 
653 |a microenvironment 
653 |a hypoxia 
653 |a DDS 
653 |a anaerobic bacteria 
653 |a Bifidobacterium 
653 |a bacterial therapy 
653 |a iDPS 
653 |a EPR-based therapy 
653 |a passive targeting 
653 |a heterogeneity 
653 |a solid-tumor 
653 |a EPR-imaging techniques 
653 |a sildenafil 
653 |a phosphodiesterase 5 inhibitors 
653 |a drug repurposing 
653 |a chemoadjuvant 
653 |a arterial infusion 
653 |a canine cancer 
653 |a particle beam therapy 
653 |a proton beam therapy 
653 |a carbon-ion beam therapy 
653 |a combination therapy 
653 |a iNaD 
653 |a siRNA 
653 |a microRNA 
653 |a calcium phosphate 
653 |a PEG blending 
653 |a cancer treatment 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6226  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/93797  |7 0  |z DOAB: description of the publication