Fuzzy Logic and Soft Computing – Dedicated to the Centenary of the Birth of Lotfi A. Zadeh (1921-2017)
The present book contains 14 papers accepted and published in the Special Issue of the MDPI Mathematics journal, entitled "Fuzzy Logic and Soft Computing - Dedicated to the Centenary of the Birth of Lotfi A. Zadeh (1921-2017)", which covers a wide range of topics connected to the theory an...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_93813 | ||
005 | 20221117 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20221117s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-5588-1 | ||
020 | |a 9783036555881 | ||
020 | |a 9783036555874 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-5588-1 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
072 | 7 | |a P |2 bicssc | |
100 | 1 | |a Dzitac, Ioan |4 edt | |
700 | 1 | |a Nadaban, Sorin |4 edt | |
700 | 1 | |a Dzitac, Ioan |4 oth | |
700 | 1 | |a Nadaban, Sorin |4 oth | |
245 | 1 | 0 | |a Fuzzy Logic and Soft Computing – Dedicated to the Centenary of the Birth of Lotfi A. Zadeh (1921-2017) |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (230 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The present book contains 14 papers accepted and published in the Special Issue of the MDPI Mathematics journal, entitled "Fuzzy Logic and Soft Computing - Dedicated to the Centenary of the Birth of Lotfi A. Zadeh (1921-2017)", which covers a wide range of topics connected to the theory and applications of fuzzy logic and soft computing. More precisely, these topics include: mathematical programming problems with coefficients and/or decision variables expressed by fuzzy numbers; soft computing methods in a fuzzy environment; fuzzy inner product spaces; M-hazy vector spaces; interval ranges of fuzzy sets; arithmetic operations of fuzzy sets; gradual numbers; Interval-valued fuzzy soft sets; interval-valued fuzzy soft topology; preference relationships; L-fuzzy sub-effect algebras; Fuzzy differential subordinations; m-polar fuzzy set in semigroups; practical use of the marks; the fuzzy logic approach for decision-making systems in management control; multigranulation rough sets; the multigranulation roughness of an intuitionistic fuzzy set; decision-making algorithms, etc. We hope that this book will be useful for those who work in the domains of fuzzy logic and soft computing or for those who want to familiarize themselves with the most advanced knowledge in the field of fuzzy mathematics. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
650 | 7 | |a Mathematics & science |2 bicssc | |
653 | |a fuzzy Hilbert space | ||
653 | |a fuzzy inner product | ||
653 | |a fuzzy norm | ||
653 | |a M-hazy group | ||
653 | |a M-hazy ring | ||
653 | |a M-hazy field | ||
653 | |a M-hazy vector space | ||
653 | |a M-hazy subspace | ||
653 | |a M-fuzzifying convex space | ||
653 | |a fuzzy numbers | ||
653 | |a extension principle | ||
653 | |a mathematical programming | ||
653 | |a interval range | ||
653 | |a arithmetic | ||
653 | |a gradual numbers | ||
653 | |a gradual sets | ||
653 | |a interval-valued fuzzy soft sets | ||
653 | |a interval-valued fuzzy soft topology | ||
653 | |a preference relationship | ||
653 | |a decision-making | ||
653 | |a effect algebra | ||
653 | |a L-fuzzy subalgebra degree | ||
653 | |a L-subalgebra | ||
653 | |a L-fuzzy convexity | ||
653 | |a L-convex hull formula | ||
653 | |a soft computing | ||
653 | |a fuzzy sets | ||
653 | |a fuzzy environment | ||
653 | |a Dzitac | ||
653 | |a fuzzy differential subordination | ||
653 | |a convex function | ||
653 | |a fuzzy best dominant | ||
653 | |a differential operator | ||
653 | |a m-PF subsemigroups | ||
653 | |a m-PF generalized bi-ideals | ||
653 | |a m-PF bi-ideals | ||
653 | |a m-PF quasi-ideals | ||
653 | |a m-PF interior ideals | ||
653 | |a modal interval analysis | ||
653 | |a interval arithmetic | ||
653 | |a marks | ||
653 | |a uncertainty modeling | ||
653 | |a indiscernibility | ||
653 | |a fuzzy logic toolbox | ||
653 | |a Mamdani method | ||
653 | |a performance | ||
653 | |a management control | ||
653 | |a small and medium enterprises (SME) | ||
653 | |a analytic function | ||
653 | |a univalent function | ||
653 | |a confluent hypergeometric function | ||
653 | |a integral operator | ||
653 | |a intuitionistic fuzzy set | ||
653 | |a soft relation | ||
653 | |a multigranulation roughness | ||
653 | |a decision making | ||
653 | |a fuzzy differential superordination | ||
653 | |a fuzzy best subordinant | ||
653 | |a fractional integral | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/6242 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/93813 |7 0 |z DOAB: description of the publication |