In Silico Approaches in Drug Design

This reprint is a collection of 31 original papers and four reviews, published from 2021 to 2022, focused on the application of a wide range of computational tools in medicinal chemistry projects: from molecular docking to artificial intelligence approaches. Applications of in silico tools are cruci...

Full description

Saved in:
Bibliographic Details
Other Authors: Santos-Filho, Osvaldo (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Ras
DAT
MD
TCM
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_93823
005 20221117
003 oapen
006 m o d
007 cr|mn|---annan
008 20221117s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-5383-2 
020 |a 9783036553832 
020 |a 9783036553849 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-5383-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PN  |2 bicssc 
100 1 |a Santos-Filho, Osvaldo  |4 edt 
700 1 |a Santos-Filho, Osvaldo  |4 oth 
245 1 0 |a In Silico Approaches in Drug Design 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (754 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This reprint is a collection of 31 original papers and four reviews, published from 2021 to 2022, focused on the application of a wide range of computational tools in medicinal chemistry projects: from molecular docking to artificial intelligence approaches. Applications of in silico tools are crucial in the early stages of drug design, such as planning more efficient and economic synthetic routes for chemical administration, screening of huge databases, as well as proposing hypotheses for probable mechanisms of action of drugs in macromolecular targets. Such endeavors are extremely complex and require the usage of modern and sophisticated approaches, such as artificial intelligence, data mining, computational molecular simulations through classical mechanics and quantum mechanics, molecular docking, chemoinformatics, applied mathematics, and biostatistics. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Chemistry  |2 bicssc 
653 |a T-type calcium channel blocker 
653 |a homology modeling 
653 |a computer-aid drug design 
653 |a virtual drug screening 
653 |a L-type calcium channel 
653 |a mTOR kinase 
653 |a marine natural products 
653 |a ATP-competitive inhibitors 
653 |a structure-based pharmacophore modeling 
653 |a virtual screening 
653 |a molecular docking 
653 |a molecular dynamics simulations 
653 |a binding free energy 
653 |a in silico ADMET 
653 |a α-Glucosidase 
653 |a QSAR modeling 
653 |a ADMET profiling 
653 |a cervical cancer management 
653 |a computer-aided drug design 
653 |a E6 inhibitors 
653 |a in silico studies 
653 |a human papillomavirus 
653 |a manifold learning 
653 |a machine learning 
653 |a rdkit 
653 |a embeddings 
653 |a Tox21 
653 |a principal component analysis 
653 |a autoencoder 
653 |a skin sensitization 
653 |a toxicity prediction 
653 |a in silico prediction 
653 |a random forest 
653 |a conformal prediction 
653 |a bioactivity descriptors 
653 |a SARS coronavirus 
653 |a SARS-CoV-2 main protease 
653 |a structure-based virtual screening 
653 |a molecular dynamic simulation 
653 |a hit identification 
653 |a Alzheimer's disease 
653 |a multitarget 
653 |a natural-like compounds 
653 |a library of integrated network-based cellular signatures (LINCS) 
653 |a longevity 
653 |a gene regulating effects 
653 |a gene descriptors 
653 |a molecular fingerprints 
653 |a deep neural network 
653 |a drug repurposing 
653 |a Variola virus 
653 |a thymidylate kinase 
653 |a smallpox 
653 |a docking 
653 |a molecular dynamics 
653 |a molecular modeling 
653 |a permeability 
653 |a membrane disruption 
653 |a membrane proteins 
653 |a drugs 
653 |a antimicrobial peptides 
653 |a Ras 
653 |a RasGRF1 
653 |a hydrogen-bond surrogate 
653 |a computational residue scanning 
653 |a MM-GBSA 
653 |a protein-protein interaction 
653 |a ERK signalling 
653 |a cocaine addiction 
653 |a intellectual disability (ID) 
653 |a autism spectrum disorder (ASD) 
653 |a gated recurrent unit 
653 |a recurrent neural network 
653 |a transfer learning 
653 |a caspase-6 
653 |a inhibitor 
653 |a molecular design 
653 |a computational drug design 
653 |a deep learning 
653 |a multiscale 
653 |a polypharmacology 
653 |a Mycobacterium tuberculosis 
653 |a mycolic acid methyltransferases 
653 |a fragment-based ligand discovery 
653 |a binding energies 
653 |a molecular modelling 
653 |a heat shock protein 
653 |a HSP70 
653 |a nucleotide-binding domain 
653 |a piperlongumine 
653 |a fluorescence spectroscopy 
653 |a circular dichroism 
653 |a molecular mechanics Poisson-Boltzmann surface area 
653 |a Parkinson's disease 
653 |a catechol-O-methyltransferase 
653 |a inhibitors 
653 |a bioinformatics 
653 |a pharmacophore modeling 
653 |a cytotoxicity 
653 |a computational drug discovery 
653 |a chemical space 
653 |a parallelization 
653 |a high-performance computers and accelerators 
653 |a sulfonamides 
653 |a arylsulfonamide 
653 |a anticancer compounds 
653 |a telomerase inhibitors 
653 |a structure-based drug design 
653 |a computer drug design 
653 |a MolAr 
653 |a DNA intercalating agents 
653 |a SARS-CoV-2 
653 |a main protease, Mpro 
653 |a docking benchmark 
653 |a non-steroidal anti-inflammatory drugs 
653 |a drug discovery 
653 |a lipoxygenase 
653 |a cyclooxygenase 
653 |a Hsp90 
653 |a cancer 
653 |a QSAR 
653 |a pharmacophores 
653 |a in-silico drug design 
653 |a AlphaFold 
653 |a anti-CRISPR proteins 
653 |a prokaryotic defence mechanisms 
653 |a bacteriophages 
653 |a structural biology 
653 |a protein drug 
653 |a Merkel cell polyomavirus 
653 |a Merkel cell carcinomas 
653 |a drug design 
653 |a ADMET 
653 |a MD simulation 
653 |a antimicrobial peptide database 
653 |a antiviral peptides 
653 |a database filtering technology 
653 |a Ebola virus 
653 |a peptide design 
653 |a G-quadruplex DNA 
653 |a TERRA 
653 |a mass spectrometry 
653 |a biological assays 
653 |a mangrove natural products 
653 |a KRASG12C 
653 |a ligand-based pharmacophore modeling 
653 |a computational biology 
653 |a RVFV 
653 |a RdRp 
653 |a structural modeling 
653 |a GlyT1 
653 |a schizophrenia 
653 |a DAT 
653 |a MD 
653 |a chagas 
653 |a leishmaniasis 
653 |a naphthoquinones 
653 |a antiprotozoal evaluation 
653 |a ADME 
653 |a COVID-19 
653 |a NSP3 
653 |a TCM 
653 |a MD simulations 
653 |a mutagenesis 
653 |a artificial intelligence 
653 |a biased signaling 
653 |a G protein-coupled receptor 
653 |a immunology 
653 |a flavonoids 
653 |a IDO1 
653 |a free energy 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6252  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/93823  |7 0  |z DOAB: description of the publication