Bayes Factors for Forensic Decision Analyses with R

Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability-keeping theor...

Full description

Saved in:
Bibliographic Details
Main Author: Bozza, Silvia (auth)
Other Authors: Taroni, Franco (auth), Biedermann, Alex (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2022
Series:Springer Texts in Statistics
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_93947
005 20221119
003 oapen
006 m o d
007 cr|mn|---annan
008 20221119s2022 xx |||||o ||| 0|eng d
020 |a 978-3-031-09839-0 
020 |a 9783031098390 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-09839-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBT  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a JKVF1  |2 bicssc 
072 7 |a MMQ  |2 bicssc 
072 7 |a JMK  |2 bicssc 
072 7 |a JHBC  |2 bicssc 
100 1 |a Bozza, Silvia  |4 auth 
700 1 |a Taroni, Franco  |4 auth 
700 1 |a Biedermann, Alex  |4 auth 
245 1 0 |a Bayes Factors for Forensic Decision Analyses with R 
260 |a Cham  |b Springer Nature  |c 2022 
300 |a 1 electronic resource (187 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Texts in Statistics 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability-keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: Probabilistic Inference - Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. Decision Making - Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. Operational Relevance - Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information-scientific evidence-ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes. This book is Open Access. 
536 |a Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Probability & statistics  |2 bicssc 
650 7 |a Mathematical & statistical software  |2 bicssc 
650 7 |a Forensic science  |2 bicssc 
650 7 |a Forensic medicine  |2 bicssc 
650 7 |a Criminal or forensic psychology  |2 bicssc 
650 7 |a Social research & statistics  |2 bicssc 
653 |a Bayes factor 
653 |a scientific evidence 
653 |a decision making 
653 |a forensic science 
653 |a uncertainty management 
653 |a probability theory 
653 |a forensic 
653 |a decision analysis 
653 |a Bayesian modeling 
653 |a R 
653 |a Bayesian statistics 
653 |a probabilistic inference 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/59364/1/978-3-031-09839-0.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/93947  |7 0  |z DOAB: description of the publication