Multivariate Statistical Analysis in the Real and Complex Domains

This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book featur...

Full description

Saved in:
Bibliographic Details
Main Author: Mathai, Arak M. (auth)
Other Authors: Provost, Serge B. (auth), Haubold, Hans J. (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_93966
005 20221119
003 oapen
006 m o d
007 cr|mn|---annan
008 20221119s2022 xx |||||o ||| 0|eng d
020 |a 978-3-030-95864-0 
020 |a 9783030958640 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-030-95864-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBT  |2 bicssc 
072 7 |a PBW  |2 bicssc 
072 7 |a PHS  |2 bicssc 
100 1 |a Mathai, Arak M.  |4 auth 
700 1 |a Provost, Serge B.  |4 auth 
700 1 |a Haubold, Hans J.  |4 auth 
245 1 0 |a Multivariate Statistical Analysis in the Real and Complex Domains 
260 |a Cham  |b Springer Nature  |c 2022 
300 |a 1 electronic resource (912 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Probability & statistics  |2 bicssc 
650 7 |a Applied mathematics  |2 bicssc 
650 7 |a Statistical physics  |2 bicssc 
653 |a multivariate statistical analysis 
653 |a mathematical statistics 
653 |a complex domain 
653 |a matrix-variate 
653 |a Gaussian distributions 
653 |a Wishart distribution 
653 |a type-1 distributions 
653 |a type-2 distributions 
653 |a factor analysis 
653 |a classifications 
653 |a cluster 
653 |a profile analyses 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/59381/1/978-3-030-95864-0.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/93966  |7 0  |z DOAB: description of the publication