Applied Metaheuristic Computing

For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact...

Full description

Saved in:
Bibliographic Details
Other Authors: Yin, Peng-Yeng (Editor), Chang, Ray-I (Editor), Gheraibia, Youcef (Editor), Chuang, Ming-Chin (Editor), Lin, Hua-Yi (Editor), Lee, Jen-Chun (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_94530
005 20221206
003 oapen
006 m o d
007 cr|mn|---annan
008 20221206s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-5570-6 
020 |a 9783036555690 
020 |a 9783036555706 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-5570-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Yin, Peng-Yeng  |4 edt 
700 1 |a Chang, Ray-I  |4 edt 
700 1 |a Gheraibia, Youcef  |4 edt 
700 1 |a Chuang, Ming-Chin  |4 edt 
700 1 |a Lin, Hua-Yi  |4 edt 
700 1 |a Lee, Jen-Chun  |4 edt 
700 1 |a Yin, Peng-Yeng  |4 oth 
700 1 |a Chang, Ray-I  |4 oth 
700 1 |a Gheraibia, Youcef  |4 oth 
700 1 |a Chuang, Ming-Chin  |4 oth 
700 1 |a Lin, Hua-Yi  |4 oth 
700 1 |a Lee, Jen-Chun  |4 oth 
245 1 0 |a Applied Metaheuristic Computing 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (684 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a metaheuristics 
653 |a heuristics 
653 |a optimization 
653 |a artificial intelligence 
653 |a energy 
653 |a information security 
653 |a recognition 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/topic/6362  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/94530  |7 0  |z DOAB: description of the publication