Remote Sensing in Agriculture: State-of-the-Art
The Special Issue on "Remote Sensing in Agriculture: State-of-the-Art" gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to fore...
Saved in:
Other Authors: | , , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_94550 | ||
005 | 20221206 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20221206s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-5484-6 | ||
020 | |a 9783036554839 | ||
020 | |a 9783036554846 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-5484-6 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
072 | 7 | |a TBX |2 bicssc | |
072 | 7 | |a TQ |2 bicssc | |
100 | 1 | |a Borgogno-Mondino, Enrico |4 edt | |
700 | 1 | |a Tarantino, Eufemia |4 edt | |
700 | 1 | |a Capolupo, Alessandra |4 edt | |
700 | 1 | |a Borgogno-Mondino, Enrico |4 oth | |
700 | 1 | |a Tarantino, Eufemia |4 oth | |
700 | 1 | |a Capolupo, Alessandra |4 oth | |
245 | 1 | 0 | |a Remote Sensing in Agriculture: State-of-the-Art |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (220 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The Special Issue on "Remote Sensing in Agriculture: State-of-the-Art" gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
650 | 7 | |a History of engineering & technology |2 bicssc | |
650 | 7 | |a Environmental science, engineering & technology |2 bicssc | |
653 | |a feature selection | ||
653 | |a spectral angle mapper | ||
653 | |a support vector machine | ||
653 | |a support vector regression | ||
653 | |a hyperspectral imaging | ||
653 | |a UAV | ||
653 | |a cross-scale | ||
653 | |a yellow rust | ||
653 | |a spatial resolution | ||
653 | |a winter wheat | ||
653 | |a MODIS | ||
653 | |a northern Mongolia | ||
653 | |a remote sensing indices | ||
653 | |a spring wheat | ||
653 | |a yield estimation | ||
653 | |a UAV-based LiDAR | ||
653 | |a biomass | ||
653 | |a crop height | ||
653 | |a field phenotyping | ||
653 | |a oasis crop type mapping | ||
653 | |a Sentinel-1 and 2 integration | ||
653 | |a statistically homogeneous pixels (SHPs) | ||
653 | |a red-edge spectral bands and indices | ||
653 | |a recursive feature increment (RFI) | ||
653 | |a random forest (RF) | ||
653 | |a unmanned aerial vehicles (UAVs) | ||
653 | |a remote sensing (RS) | ||
653 | |a thermal UAV RS | ||
653 | |a thermal infrared (TIR) | ||
653 | |a precision agriculture (PA) | ||
653 | |a crop water stress monitoring | ||
653 | |a plant disease detection | ||
653 | |a vegetation status monitoring | ||
653 | |a Landsat | ||
653 | |a data blending | ||
653 | |a crop yield prediction | ||
653 | |a gap-filling | ||
653 | |a volumetric soil moisture | ||
653 | |a synthetic aperture radar (SAR) | ||
653 | |a Sentinel-1 | ||
653 | |a soil moisture semi-empirical model | ||
653 | |a soil moisture Karnataka India | ||
653 | |a reflectance | ||
653 | |a digital number (DN) | ||
653 | |a vegetation index (VI) | ||
653 | |a Parrot Sequoia (Sequoia) | ||
653 | |a DJI Phantom 4 Multispectral (P4M) | ||
653 | |a Synthetic Aperture Radar | ||
653 | |a SAR | ||
653 | |a lodging | ||
653 | |a Hidden Markov Random Field | ||
653 | |a HMRF | ||
653 | |a CDL | ||
653 | |a corn | ||
653 | |a soybean | ||
653 | |a crop Monitoring | ||
653 | |a crop management | ||
653 | |a apple orchard damage | ||
653 | |a polarimetric decomposition | ||
653 | |a entropy | ||
653 | |a anisotropy | ||
653 | |a alpha angle | ||
653 | |a storm damage mapping | ||
653 | |a economic loss | ||
653 | |a insurance support | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/6385 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/94550 |7 0 |z DOAB: description of the publication |