Big Data Analytics and Information Science for Business and Biomedical Applications II
The analysis of big data in biomedical, business and financial research has drawn much attention from researchers worldwide. This collection of articles aims to provide a platform for an in-depth discussion of novel statistical methods developed for the analysis of Big Data in these areas. Both appl...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_94553 | ||
005 | 20221206 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20221206s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-5550-8 | ||
020 | |a 9783036555492 | ||
020 | |a 9783036555508 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-5550-8 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a KNTX |2 bicssc | |
072 | 7 | |a UY |2 bicssc | |
100 | 1 | |a Ahmed, S. Ejaz |4 edt | |
700 | 1 | |a Nathoo, Farouk |4 edt | |
700 | 1 | |a Ahmed, S. Ejaz |4 oth | |
700 | 1 | |a Nathoo, Farouk |4 oth | |
245 | 1 | 0 | |a Big Data Analytics and Information Science for Business and Biomedical Applications II |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (196 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The analysis of big data in biomedical, business and financial research has drawn much attention from researchers worldwide. This collection of articles aims to provide a platform for an in-depth discussion of novel statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions to these areas are showcased. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Information technology industries |2 bicssc | |
650 | 7 | |a Computer science |2 bicssc | |
653 | |a bandwidth selection | ||
653 | |a correlation | ||
653 | |a edge-preserving image denoising | ||
653 | |a image sequence | ||
653 | |a jump regression analysis | ||
653 | |a local smoothing | ||
653 | |a nonparametric regression | ||
653 | |a spatio-temporal data | ||
653 | |a linear mixed model | ||
653 | |a ridge estimation | ||
653 | |a pretest and shrinkage estimation | ||
653 | |a multicollinearity | ||
653 | |a asymptotic bias and risk | ||
653 | |a LASSO estimation | ||
653 | |a high-dimensional data | ||
653 | |a big data adaptation | ||
653 | |a dividend estimation | ||
653 | |a options markets | ||
653 | |a weighted least squares | ||
653 | |a online health community | ||
653 | |a social support | ||
653 | |a network analysis | ||
653 | |a cancer | ||
653 | |a functional principal component analysis | ||
653 | |a functional predictor | ||
653 | |a linear mixed-effects model | ||
653 | |a mobile device | ||
653 | |a sparse group regularization | ||
653 | |a wearable device data | ||
653 | |a Bayesian modeling | ||
653 | |a functional regression | ||
653 | |a gestational weight | ||
653 | |a infant birth weight | ||
653 | |a joint modeling | ||
653 | |a longitudinal data | ||
653 | |a maternal weight gain | ||
653 | |a transfer learning | ||
653 | |a deep learning | ||
653 | |a pretrained neural networks | ||
653 | |a chest X-ray images | ||
653 | |a lung diseases | ||
653 | |a causal structure learning | ||
653 | |a consistency | ||
653 | |a FCI algorithm | ||
653 | |a high dimensionality | ||
653 | |a nonparametric testing | ||
653 | |a PC algorithm | ||
653 | |a fMRI | ||
653 | |a functional connectivity | ||
653 | |a brain network | ||
653 | |a Human Connectome Project | ||
653 | |a statistics | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/6388 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/94553 |7 0 |z DOAB: description of the publication |