Optimization of adaptive test design methods for the determination of steady-state data-driven models in terms of combustion engine calibration

This thesis deals with the development of a model-based adaptive test design strategy with a focus on steady-state combustion engine calibration. The first research topic investigates the question how to handle limits in the input domain during an adaptive test design procedure. The second area of s...

Full description

Saved in:
Bibliographic Details
Main Author: Sandmeier, Nino (auth)
Format: Electronic Book Chapter
Language:English
Published: Berlin Universitätsverlag der Technischen Universität Berlin 2022
Series:Advances in Automation Engineering
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_94911
005 20221213
003 oapen
006 m o d
007 cr|mn|---annan
008 20221213s2022 xx |||||o ||| 0|eng d
020 |a depositonce-15364 
020 |a 9783798332478 
040 |a oapen  |c oapen 
024 7 |a 10.14279/depositonce-15364  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBMM  |2 bicssc 
072 7 |a TH  |2 bicssc 
100 1 |a Sandmeier, Nino  |4 auth 
245 1 0 |a Optimization of adaptive test design methods for the determination of steady-state data-driven models in terms of combustion engine calibration 
260 |a Berlin  |b Universitätsverlag der Technischen Universität Berlin  |c 2022 
300 |a 1 electronic resource (236 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in Automation Engineering 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This thesis deals with the development of a model-based adaptive test design strategy with a focus on steady-state combustion engine calibration. The first research topic investigates the question how to handle limits in the input domain during an adaptive test design procedure. The second area of scope aims at identifying the test design method providing the best model quality improvement in terms of overall model prediction error. To consider restricted areas in the input domain, a convex hull-based solution involving a convex cone algorithm is developed, the outcome of which serves as a boundary model for a test point search. A solution is derived to enable the application of the boundary model to high-dimensional problems without calculating the exact convex hull and cones. Furthermore, different data-driven engine modeling methods are compared, resulting in the Gaussian process model as the most suitable one for a model-based calibration. To determine an appropriate test design method for a Gaussian process model application, two new strategies are developed and compared to state-of-the-art methods. A simulation-based study shows the most benefit applying a modified mutual information test design, followed by a newly developed relevance-based test design with less computational effort. The boundary model and the relevance-based test design are integrated into a multicriterial test design strategy that is tailored to match the requirements of combustion engine test bench measurements. A simulation-based study with seven and nine input parameters and four outputs each offered an average model quality improvement of 36 % and an average measured input area volume increase of 65 % compared to a non-adaptive space-filling test design. The multicriterial test design was applied to a test bench measurement with seven inputs for verification. Compared to a space-filling test design measurement, the improvement could be confirmed with an average model quality increase of 17 % over eight outputs and a 34 % larger measured input area. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Engineering measurement & calibration  |2 bicssc 
650 7 |a Energy technology & engineering  |2 bicssc 
653 |a design of experiments; adaptive test design; boundary search 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/60120/1/sandmeier_nino.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/94911  |7 0  |z DOAB: description of the publication