Statistical Foundations of Actuarial Learning and its Applications

This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statisti...

Full description

Saved in:
Bibliographic Details
Main Author: Wüthrich, Mario V. (auth)
Other Authors: Merz, Michael (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2023
Series:Springer Actuarial
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_94965
005 20221214
003 oapen
006 m o d
007 cr|mn|---annan
008 20221214s2023 xx |||||o ||| 0|eng d
020 |a 978-3-031-12409-9 
020 |a 9783031124099 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-12409-9  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBW  |2 bicssc 
072 7 |a PBT  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
072 7 |a UMB  |2 bicssc 
072 7 |a UYQ  |2 bicssc 
100 1 |a Wüthrich, Mario V.  |4 auth 
700 1 |a Merz, Michael  |4 auth 
245 1 0 |a Statistical Foundations of Actuarial Learning and its Applications 
260 |a Cham  |b Springer Nature  |c 2023 
300 |a 1 electronic resource (605 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Actuarial 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice. Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features. Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus. 
536 |a Swiss Re 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Applied mathematics  |2 bicssc 
650 7 |a Probability & statistics  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
650 7 |a Algorithms & data structures  |2 bicssc 
650 7 |a Artificial intelligence  |2 bicssc 
653 |a Deep Learning 
653 |a Actuarial Modeling 
653 |a Pricing and Claims Reserving 
653 |a Artificial Neural Networks 
653 |a Regression Modeling 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/60157/1/978-3-031-12409-9.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/94965  |7 0  |z DOAB: description of the publication