Artificial Intelligence-Based Learning Approaches for Remote Sensing

The reprint focuses on artificial intelligence-based learning approaches and their applications in remote sensing fields. The explosive development of machine learning, deep learning approaches and its wide applications in signal processing have been witnessed in remote sensing. The new developments...

Full description

Saved in:
Bibliographic Details
Other Authors: Jeon, Gwanggil (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
AIS
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_95818
005 20230105
003 oapen
006 m o d
007 cr|mn|---annan
008 20230105s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-6084-7 
020 |a 9783036560830 
020 |a 9783036560847 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-6084-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a TQ  |2 bicssc 
100 1 |a Jeon, Gwanggil  |4 edt 
700 1 |a Jeon, Gwanggil  |4 oth 
245 1 0 |a Artificial Intelligence-Based Learning Approaches for Remote Sensing 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (382 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The reprint focuses on artificial intelligence-based learning approaches and their applications in remote sensing fields. The explosive development of machine learning, deep learning approaches and its wide applications in signal processing have been witnessed in remote sensing. The new developments in remote sensing have led to a high resolution monitoring of ground on a global scale, giving a huge amount of ground observation data. Thus, artificial intelligence-based deep learning approaches and its applied signal processing are required for remote sensing. These approaches can be universal or specific tools of artificial intelligence, including well known neural networks, regression methods, decision trees, etc. It is worth compiling the various cutting-edge techniques and reporting on their promising applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Environmental science, engineering & technology  |2 bicssc 
653 |a pine wilt disease dataset 
653 |a GIS application visualization 
653 |a test-time augmentation 
653 |a object detection 
653 |a hard negative mining 
653 |a video synthetic aperture radar (SAR) 
653 |a moving target 
653 |a shadow detection 
653 |a deep learning 
653 |a false alarms 
653 |a missed detections 
653 |a synthetic aperture radar (SAR) 
653 |a on-board 
653 |a ship detection 
653 |a YOLOv5 
653 |a lightweight detector 
653 |a remote sensing image 
653 |a spectral domain translation 
653 |a generative adversarial network 
653 |a paired translation 
653 |a synthetic aperture radar 
653 |a ship instance segmentation 
653 |a global context modeling 
653 |a boundary-aware box prediction 
653 |a land-use and land-cover 
653 |a built-up expansion 
653 |a probability modelling 
653 |a landscape fragmentation 
653 |a machine learning 
653 |a support vector machine 
653 |a frequency ratio 
653 |a fuzzy logic 
653 |a artificial intelligence 
653 |a remote sensing 
653 |a interferometric phase filtering 
653 |a sparse regularization (SR) 
653 |a deep learning (DL) 
653 |a neural convolutional network (CNN) 
653 |a semantic segmentation 
653 |a open data 
653 |a building extraction 
653 |a unet 
653 |a deeplab 
653 |a classifying-inversion method 
653 |a AIS 
653 |a atmospheric duct 
653 |a ship detection and classification 
653 |a rotated bounding box 
653 |a attention 
653 |a feature alignment 
653 |a weather nowcasting 
653 |a ResNeXt 
653 |a radar data 
653 |a spectral-spatial interaction network 
653 |a spectral-spatial attention 
653 |a pansharpening 
653 |a UAV visual navigation 
653 |a Siamese network 
653 |a multi-order feature 
653 |a MIoU 
653 |a imbalanced data classification 
653 |a data over-sampling 
653 |a graph convolutional network 
653 |a semi-supervised learning 
653 |a troposcatter 
653 |a tropospheric turbulence 
653 |a intercity co-channel interference 
653 |a concrete bridge 
653 |a visual inspection 
653 |a defect 
653 |a deep convolutional neural network 
653 |a transfer learning 
653 |a interpretation techniques 
653 |a weakly supervised semantic segmentation 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6474  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/95818  |7 0  |z DOAB: description of the publication