Software Engineering and Data Science

This reprint focuses on data-driven software solutions and their impact on research and development at the academic, industry, business, and government levels to exploit the hidden knowledge and big data that can be offered to cities and citizens in the future. Data-driven software solutions are dif...

Full description

Saved in:
Bibliographic Details
Other Authors: Tosi, Davide (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_96748
005 20230202
003 oapen
006 m o d
007 cr|mn|---annan
008 20230202s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-6441-8 
020 |a 9783036564401 
020 |a 9783036564418 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-6441-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
100 1 |a Tosi, Davide  |4 edt 
700 1 |a Tosi, Davide  |4 oth 
245 1 0 |a Software Engineering and Data Science 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (132 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This reprint focuses on data-driven software solutions and their impact on research and development at the academic, industry, business, and government levels to exploit the hidden knowledge and big data that can be offered to cities and citizens in the future. Data-driven software solutions are different from "traditional" software development projects, as the focus of the main development core is on managing the data (e.g., data store and data quality) and designing behavioral models with the aid of artificial intelligence and machine learning techniques. To this end, new life cycles, algorithms, methods, processes, and tools are required. This reprint is centered on the recent trends and advancements in the field of engineering data-intensive software solutions to address the challenges in developing, testing, and maintaining such data-driven systems, with a focus on the application of data-driven solutions to real-life problems and techniques and algorithms addressing the different challenges of data-driven software engineering. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a COVID-19 
653 |a SARS-CoV-2 
653 |a data analytics 
653 |a schools' impact 
653 |a Google mobility impact 
653 |a feature selection 
653 |a ontology 
653 |a text classification 
653 |a machine-learning 
653 |a SARS-COV-2 
653 |a Bayesian regression 
653 |a changepoint detection 
653 |a European football championship 
653 |a big data 
653 |a delay-tolerant network (DTN) 
653 |a multi-attribute decision making 
653 |a public transport 
653 |a energy consumption 
653 |a software development process 
653 |a operations 
653 |a software engineering 
653 |a information system development 
653 |a team structure 
653 |a Software Library Recommendation 
653 |a graph filters 
653 |a dependency graphs 
653 |a link prediction 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6694  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/96748  |7 0  |z DOAB: description of the publication