Robust Design Optimization of Electrical Machines and Devices

This reprint contains fourteen chosen articles on robust design optimization of electrical machines and devices. Optimization is essential for the research and design of electromechanical devices, especially electrical machines. Finding optimal solutions may lead to cheaper and more efficient produc...

Full description

Saved in:
Bibliographic Details
Other Authors: Orosz, Tamás (Editor), Pánek, David (Editor), Rassõlkin, Anton (Editor), Kuczmann, Miklos (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_96775
005 20230202
003 oapen
006 m o d
007 cr|mn|---annan
008 20230202s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-6377-0 
020 |a 9783036563763 
020 |a 9783036563770 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-6377-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a KNB  |2 bicssc 
100 1 |a Orosz, Tamás  |4 edt 
700 1 |a Pánek, David  |4 edt 
700 1 |a Rassõlkin, Anton  |4 edt 
700 1 |a Kuczmann, Miklos  |4 edt 
700 1 |a Orosz, Tamás  |4 oth 
700 1 |a Pánek, David  |4 oth 
700 1 |a Rassõlkin, Anton  |4 oth 
700 1 |a Kuczmann, Miklos  |4 oth 
245 1 0 |a Robust Design Optimization of Electrical Machines and Devices 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (228 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This reprint contains fourteen chosen articles on robust design optimization of electrical machines and devices. Optimization is essential for the research and design of electromechanical devices, especially electrical machines. Finding optimal solutions may lead to cheaper and more efficient production of electrical machines. However, optimizing such a complex system as an electrical machine is a computationally expensive optimization problem, where many physical domains should be considered together. However, a good, practical design should be insensitive to parameter changes and the manufacturing tolerances. The collected papers show how modern artificial intelligence (AI) tools can be used for the robust design optimization of electric machines and electrical devices. The articles which are published in this Special Issue present the latest results of current research fields. Hopefully, the presented models and various application fields will provide useful information for researchers and professionals interested in these techniques themselves or who have other problems from different fields. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Energy industries & utilities  |2 bicssc 
653 |a design optimization 
653 |a genetic algorithms 
653 |a Taguchi designs 
653 |a electromagnetic coupling 
653 |a additive manufacturing 
653 |a dynamic performance 
653 |a equivalent circuit model 
653 |a finite-element method 
653 |a linear induction motor 
653 |a longitudinal end effect 
653 |a transverse edge effect 
653 |a DLIM 
653 |a equivalent circuit 
653 |a end effect 
653 |a thrust 
653 |a finite element 
653 |a insulation core transformer 
653 |a non-uniformity of disk output voltage 
653 |a load regulation 
653 |a voltage compensation 
653 |a dummy primary winding 
653 |a PSO algorithm 
653 |a PMSM 
653 |a analytical method 
653 |a perturbation theory 
653 |a torque 
653 |a torque ripple 
653 |a rotor eccentricity 
653 |a optimization 
653 |a electrical machines 
653 |a finite element method 
653 |a nuclear power plant 
653 |a thermal degradation 
653 |a thermal-mechanical aging 
653 |a low-voltage cables 
653 |a polymer degradation 
653 |a dielectric spectroscopy 
653 |a hardness 
653 |a hairpin windings 
653 |a multi-objective optimizations 
653 |a Finite Element Method 
653 |a Lumped Parameter Model 
653 |a Permanent Magnet Synchronous Reluctance Motor 
653 |a rotor flux barrier 
653 |a torque development 
653 |a Aurivillius phases 
653 |a Bi3−xNdxTi1.5W0.5O9 
653 |a activation energy Ea 
653 |a Curie temperature TC 
653 |a artificial intelligence 
653 |a optimization techniques 
653 |a self-organizing map 
653 |a power quality 
653 |a wind generation 
653 |a upgraded insulant 
653 |a ester oil-based nano fluids 
653 |a thermal conductivity 
653 |a relative viscosity 
653 |a nanoparticles effect 
653 |a alternative fluid 
653 |a temperature change 
653 |a model predictive control 
653 |a hysteresis current control 
653 |a execution time 
653 |a synchronous reluctance motors 
653 |a antenna array 
653 |a synthesis control 
653 |a quantized control 
653 |a array factor 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6721  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/96775  |7 0  |z DOAB: description of the publication