Phase Equilibria With Supercritical Carbon Dioxide Application to the Components of a Biocatalytic Process

We are living in a critical time, both for humanity and the planet, which has led us to look for more sustainable formulas to interact with the environment. One of the important changes in the design and operation of chemical processes is the search for environmentally friendly technologies. Supercr...

Full description

Saved in:
Bibliographic Details
Other Authors: Montalbán, Mercedes G. (Editor), Víllora, Gloria (Editor)
Format: Electronic Book Chapter
Language:English
Published: IntechOpen 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We are living in a critical time, both for humanity and the planet, which has led us to look for more sustainable formulas to interact with the environment. One of the important changes in the design and operation of chemical processes is the search for environmentally friendly technologies. Supercritical carbon dioxide has been revealed as a promising environmentally friendly solvent that is energy efficient, selective and capable of reducing waste, making it a promising alternative to conventional organic solvents. However, reliable and versatile mathematical models of phase equilibrium thermodynamics are needed for the use of supercritical carbon dioxide in process design and viability studies. This book reviews experimental procedures for obtaining high-pressure phase equilibria data and describes the phase diagrams of binary mixtures and some thermodynamic models capable of determining the conditions of phase equilibria at high pressures. These concepts are applied to the components of the transesterification reaction of rac-2-pentanol with a vinyl ester, which is important in the pharmaceutical industry because (S)-2-pentanol can be obtained as a reaction product. This product is a key intermediate in the synthesis of drugs against Alzheimer's disease.
Physical Description:1 electronic resource (74 p.)
ISBN:intechopen.100816
9781803565040
9781803565033
9781803565057
Access:Open Access