Bioinformatics and Machine Learning for Cancer Biology

Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of "omics" technologies (e.g., genomics, transcriptomics, a...

Full description

Saved in:
Bibliographic Details
Other Authors: Wan, Shibiao (Editor), Fan, Yiping (Editor), Jiang, Chunjie (Editor), Li, Shengli (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_97414
005 20230220
003 oapen
006 m o d
007 cr|mn|---annan
008 20230220s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-4813-5 
020 |a 9783036548142 
020 |a 9783036548135 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-4813-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PS  |2 bicssc 
100 1 |a Wan, Shibiao  |4 edt 
700 1 |a Fan, Yiping  |4 edt 
700 1 |a Jiang, Chunjie  |4 edt 
700 1 |a Li, Shengli  |4 edt 
700 1 |a Wan, Shibiao  |4 oth 
700 1 |a Fan, Yiping  |4 oth 
700 1 |a Jiang, Chunjie  |4 oth 
700 1 |a Li, Shengli  |4 oth 
245 1 0 |a Bioinformatics and Machine Learning for Cancer Biology 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (196 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of "omics" technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Biology, life sciences  |2 bicssc 
653 |a tumor mutational burden 
653 |a DNA damage repair genes 
653 |a immunotherapy 
653 |a biomarker 
653 |a biomedical informatics 
653 |a breast cancer 
653 |a estrogen receptor alpha 
653 |a persistent organic pollutants 
653 |a drug-drug interaction networks 
653 |a molecular docking 
653 |a NGS 
653 |a ctDNA 
653 |a VAF 
653 |a liquid biopsy 
653 |a filtering 
653 |a variant calling 
653 |a DEGs 
653 |a diagnosis 
653 |a ovarian cancer 
653 |a PUS7 
653 |a RMGs 
653 |a CPA4 
653 |a bladder urothelial carcinoma 
653 |a immune cells 
653 |a T cell exhaustion 
653 |a checkpoint 
653 |a architectural distortion 
653 |a image processing 
653 |a depth-wise convolutional neural network 
653 |a mammography 
653 |a bladder cancer 
653 |a Annexin family 
653 |a survival analysis 
653 |a prognostic signature 
653 |a therapeutic target 
653 |a R Shiny application 
653 |a RNA-seq 
653 |a proteomics 
653 |a multi-omics analysis 
653 |a T-cell acute lymphoblastic leukemia 
653 |a CCLE 
653 |a sitagliptin 
653 |a thyroid cancer (THCA) 
653 |a papillary thyroid cancer (PTCa) 
653 |a thyroidectomy 
653 |a metastasis 
653 |a drug resistance 
653 |a n/a 
653 |a biomarker identification 
653 |a transcriptomics 
653 |a machine learning 
653 |a prediction 
653 |a variable selection 
653 |a major histocompatibility complex 
653 |a bidirectional long short-term memory neural network 
653 |a deep learning 
653 |a cancer 
653 |a incidence 
653 |a mortality 
653 |a modeling 
653 |a forecasting 
653 |a Google Trends 
653 |a Romania 
653 |a ARIMA 
653 |a TBATS 
653 |a NNAR 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5918  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/97414  |7 0  |z DOAB: description of the publication