Methodologies Used in Remote Sensing Data Analysis and Remote Sensors for Precision Agriculture

When adopting remote sensing techniques in precision agriculture, there are two main areas to consider: data acquisition and data analysis methodologies. Imagery and remote sensor data collected using different platforms provide a variety of information volumes and formats. For example, recent resea...

Full description

Saved in:
Bibliographic Details
Other Authors: Chang, Jiyul (Editor), Fuentes, Sigfredo (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_98038
005 20230307
003 oapen
006 m o d
007 cr|mn|---annan
008 20230307s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-6615-3 
020 |a 9783036566146 
020 |a 9783036566153 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-6615-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Chang, Jiyul  |4 edt 
700 1 |a Fuentes, Sigfredo  |4 edt 
700 1 |a Chang, Jiyul  |4 oth 
700 1 |a Fuentes, Sigfredo  |4 oth 
245 1 0 |a Methodologies Used in Remote Sensing Data Analysis and Remote Sensors for Precision Agriculture 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (226 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a When adopting remote sensing techniques in precision agriculture, there are two main areas to consider: data acquisition and data analysis methodologies. Imagery and remote sensor data collected using different platforms provide a variety of information volumes and formats. For example, recent research in precision agriculture has used multispectral images from different platforms, such as satellites, airborne, and, most recently, drones. These images have been used for various analyses, from the detection of pests and diseases, growth, and water status of crops to yield estimations. However, accurately detecting specific biotic or abiotic stresses requires a narrow range of spectral information to be analyzed for each application. In data analysis, the volume and complexity of data formats obtained using the latest technologies in remote sensing (e.g., a cube of data for hyperspectral imagery) demands complex data processing systems and data analysis using multiple inputs to estimate specific categorical or numerical targets. New and emerging methodologies within artificial intelligence, such as machine learning and deep learning, have enabled us to deal with these increasing data volumes and the analysis complexity. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a vineyard 
653 |a pesticide application 
653 |a variable rate application 
653 |a unmanned aerial vehicle 
653 |a satellite 
653 |a nanosatellite 
653 |a monsoon crops 
653 |a leaf area index 
653 |a leaf chlorophyll concentration 
653 |a crop water content 
653 |a multispectral 
653 |a hyperspectral 
653 |a deep learning 
653 |a forage dry matter yield 
653 |a high-throughput phenotyping 
653 |a Brazilian pasture 
653 |a nitrogen indicator 
653 |a nitrogen nutrition diagnosis 
653 |a optical sensor 
653 |a spectral index 
653 |a UAV 
653 |a wheat lodging 
653 |a lightweight 
653 |a digital surface model (DSM) 
653 |a winter wheat 
653 |a fractional order differential 
653 |a continuous wavelet transform 
653 |a optimal subset regression 
653 |a support vector machine 
653 |a wheat powdery mildew 
653 |a machine learning 
653 |a information fusion 
653 |a remote sensing monitoring 
653 |a hyperspectral imaging 
653 |a dimensionality reduction 
653 |a LDA 
653 |a PLS 
653 |a PCA 
653 |a RandomForest 
653 |a ReliefF 
653 |a XGB 
653 |a Meloidogyne 
653 |a Solanum tuberosum 
653 |a soil salinity sensitive parameter 
653 |a random forest 
653 |a optimal retrieval model 
653 |a remote sensing 
653 |a high throughput phenotyping 
653 |a UAV/drone 
653 |a biomass estimation 
653 |a oats 
653 |a wheat 
653 |a yield prediction 
653 |a random forests 
653 |a satellite imagery 
653 |a Normalized Difference Vegetation Index (NDVI) 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6765  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/98038  |7 0  |z DOAB: description of the publication