Integrated Energy Systems towards Carbon Neutrality

Energy systems have played an essential role in the history of human civilization. As our civilization evolves, energy systems are expected to adapt to the environment and desire of people for more sustainable development whilst meeting the ever-increasing energy demand of society. To address global...

Full description

Saved in:
Bibliographic Details
Other Authors: Liu, Pei (Editor), Liu, Ming (Editor), Wu, Xiao (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_98873
005 20230405
003 oapen
006 m o d
007 cr|mn|---annan
008 20230405s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-6804-1 
020 |a 9783036568058 
020 |a 9783036568041 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-6804-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PH  |2 bicssc 
100 1 |a Liu, Pei  |4 edt 
700 1 |a Liu, Ming  |4 edt 
700 1 |a Wu, Xiao  |4 edt 
700 1 |a Liu, Pei  |4 oth 
700 1 |a Liu, Ming  |4 oth 
700 1 |a Wu, Xiao  |4 oth 
245 1 0 |a Integrated Energy Systems towards Carbon Neutrality 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (256 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Energy systems have played an essential role in the history of human civilization. As our civilization evolves, energy systems are expected to adapt to the environment and desire of people for more sustainable development whilst meeting the ever-increasing energy demand of society. To address global warming and its threats to sustainable development to multiple ends, major economies around the world have announced low-carbon, carbon-neutral, or negative-carbon development targets. To meet these goals, the energy systems as we know them today need to undergo substantial structural changes in terms of the way primary energy is extracted from nature, converted to secondary energy, transmitted from conversion sites to end use, and shifted between time slots to coordinate supply and demand. The share of renewable and fossil energy in the overall energy portfolio could experience unprecedented structural change of a kind not witnessed since industrialization. To cope with this harsh transition, energy systems should be planned, designed, retrofitted, and operated in a revolutionary manner.This reprint aims to present the most recent advances in energy systems analysis towards low/zero/negative carbon emission targets via integration amongst different primary energy supplies, between multiple energy supplies and demands, across geographically separated regions, and over different time scales from seconds to seasons. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Physics  |2 bicssc 
653 |a distributed energy system 
653 |a pipeline network layout 
653 |a reliability 
653 |a GeoSteiner algorithm 
653 |a Kruskal algorithm 
653 |a Star tree algorithm 
653 |a short-term electric load forecasting 
653 |a meteorological factors 
653 |a optimized support vector machine 
653 |a Elman neural network 
653 |a combined model 
653 |a cascade cooling system 
653 |a waste heat recovery 
653 |a LiBr-H2O absorption refrigeration 
653 |a heat load distribution 
653 |a temperature breakpoints 
653 |a electric vehicle 
653 |a intelligent control 
653 |a integrated energy system 
653 |a dual carbon target 
653 |a supercritical carbon dioxide Brayton cycle 
653 |a Simulink 
653 |a disturbance 
653 |a control strategy 
653 |a supercritical carbon dioxide brayton cycle 
653 |a dynamic model 
653 |a simulink 
653 |a performance analysis 
653 |a thermoeconomics 
653 |a exergy cost modeling 
653 |a irreversible loss 
653 |a transport decarbonisation 
653 |a systematic analysis 
653 |a modal shift 
653 |a infrastructure 
653 |a optimisation 
653 |a polygeneration 
653 |a SOFC 
653 |a optimal design 
653 |a residential 
653 |a electric vehicles 
653 |a hydrogen vehicle 
653 |a primary and recycled aluminum 
653 |a life cycle analysis 
653 |a energy consumption 
653 |a greenhouse gas emissions 
653 |a gas turbine 
653 |a conjugate heat transfer 
653 |a film cooling 
653 |a data-driven 
653 |a CFD 
653 |a energy conservation 
653 |a heat integration 
653 |a heat exchanger network synthesis 
653 |a retrofit 
653 |a mathematical programming 
653 |a superstructure 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/6926  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/98873  |7 0  |z DOAB: description of the publication