New Spin on Metal-Insulator Transitions

Metal‒insulator transitions (MITs) constitute a core subject of fundamental condensed matter research. The localization of conduction electrons occurs in a large variety of materials and engenders intriguing quantum phenomena such as unconventional superconductivity and exotic magnetism. Nearby an M...

Full description

Saved in:
Bibliographic Details
Other Authors: Pustogow, Andrej (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_99990
005 20230511
003 oapen
006 m o d
007 cr|mn|---annan
008 20230511s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7059-4 
020 |a 9783036570587 
020 |a 9783036570594 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7059-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a KNB  |2 bicssc 
100 1 |a Pustogow, Andrej  |4 edt 
700 1 |a Pustogow, Andrej  |4 oth 
245 1 0 |a New Spin on Metal-Insulator Transitions 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (278 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Metal‒insulator transitions (MITs) constitute a core subject of fundamental condensed matter research. The localization of conduction electrons occurs in a large variety of materials and engenders intriguing quantum phenomena such as unconventional superconductivity and exotic magnetism. Nearby an MIT, minuscule changes of the interaction strength via chemical substitution, doping, physical pressure, or even disorder can trigger spectacular resistivity changes from zero in a superconductor to infinity in an insulator near T = 0. While approaching an insulating state from the conducting side, deviations from Fermi-liquid transport in bad and strange metals are the rule rather than the exception. As the drosophila of electron‒electron interactions, the Mott MIT receives particular attention from theory as it can be studied using the Hubbard model. On the experimental side, organic charge-transfer salts and transition metal oxides are versatile platforms for working toward solving the puzzles of correlated electron systems. This Special Issue provides a view into the ongoing research endeavors investigating emergent phenomena around MITs. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Energy industries & utilities  |2 bicssc 
653 |a strongly correlated systems 
653 |a organic conductors 
653 |a relaxor-ferroelectrics 
653 |a dielectric spectroscopy 
653 |a infrared spectroscopy 
653 |a disordered systems 
653 |a metal insulator transition 
653 |a Anderson localization 
653 |a random disorder 
653 |a typical medium theory 
653 |a dynamical mean field theory 
653 |a coherent potential approximation 
653 |a dynamical cluster approximation 
653 |a cellular dynamical mean field theory 
653 |a cluster mean field theory 
653 |a FFLO 
653 |a organic superconductor 
653 |a penetration depth measurement 
653 |a resistance 
653 |a FFLO phase 
653 |a vortex dynamics 
653 |a charge-transfer salts 
653 |a (TMTTF)2X 
653 |a Fabre salts 
653 |a charge order 
653 |a strongly correlated electron systems 
653 |a extended Hubbard model 
653 |a bandwidth tuning 
653 |a partial chemical substitution 
653 |a negative chemical pressure 
653 |a phase transitions 
653 |a metal-insulator transitions 
653 |a optical conductivity 
653 |a vibrational spectroscopy 
653 |a FTIR 
653 |a strong electron correlations 
653 |a heat capacity 
653 |a Mott transition 
653 |a charge-transfer solid crystals 
653 |a two-dimensional metal 
653 |a carrier localization 
653 |a negative magnetoresistance 
653 |a phase coherence length 
653 |a organic conductor 
653 |a Mott insulator 
653 |a electric double-layer transistor 
653 |a uniaxial strain 
653 |a molecular conductors 
653 |a quantum spin liquid 
653 |a thermal conductivity 
653 |a cooling rate 
653 |a electrical resistivity 
653 |a low-temperature crystal structure 
653 |a 13C-NMR 
653 |a heavy fermion compounds 
653 |a strange metals 
653 |a Planckian dissipation 
653 |a quantum criticality 
653 |a Kondo destruction 
653 |a superconductivity 
653 |a nickelates 
653 |a molecular conductor 
653 |a manganites 
653 |a colossal magnetoresistance 
653 |a metal-insulator transition 
653 |a grain size 
653 |a variable range hopping 
653 |a core-shell model 
653 |a strongly correlated electrons 
653 |a metal-insulator transition 
653 |a charge glass 
653 |a charge crystal 
653 |a geometrical frustration 
653 |a organics 
653 |a charge density wave 
653 |a spin density wave 
653 |a spin liquid 
653 |a FFLO state 
653 |a materials database 
653 |a data science 
653 |a resistivity maxima 
653 |a dielectric response 
653 |a dilute 2DEGs 
653 |a Mott organics 
653 |a twisted transition-metal dichalcogenide bilayers 
653 |a percolation theory 
653 |a spinon theory 
653 |a anderson localization 
653 |a neural network 
653 |a quantum impurity solver 
653 |a Anderson impurity 
653 |a organic charge-transfer salts 
653 |a magnetic exchange beyond Heisenberg 
653 |a intra-dimer charge and spin degrees of freedom 
653 |a electron-lattice coupling 
653 |a disorder 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7083  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/99990  |7 0  |z DOAB: description of the publication