GIS-based assessment of spatial and temporal disparities of urban health index in Shenzhen, China

PurposeTo explore the inter-regional health index at the city level to contribute to the reduction of health inequalities.MethodsEmployed the health determinant model to select indicators for the urban health index of Shenzhen City. Utilized principal component analysis, the weights of these indicat...

Full description

Saved in:
Bibliographic Details
Main Authors: Duan Yongheng (Author), Xie Shan (Author), Liu Fei (Author), Tang Jinglin (Author), Gong Liyue (Author), Liu Xiaoying (Author), Wen Tingxiao (Author), Wang Hongrui (Author)
Format: Book
Published: Frontiers Media S.A., 2024-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_00b7c6a2da5c4ad091f5aa91777a3609
042 |a dc 
100 1 0 |a Duan Yongheng  |e author 
700 1 0 |a Xie Shan  |e author 
700 1 0 |a Liu Fei  |e author 
700 1 0 |a Tang Jinglin  |e author 
700 1 0 |a Gong Liyue  |e author 
700 1 0 |a Liu Xiaoying  |e author 
700 1 0 |a Wen Tingxiao  |e author 
700 1 0 |a Wang Hongrui  |e author 
245 0 0 |a GIS-based assessment of spatial and temporal disparities of urban health index in Shenzhen, China 
260 |b Frontiers Media S.A.,   |c 2024-09-01T00:00:00Z. 
500 |a 2296-2565 
500 |a 10.3389/fpubh.2024.1429143 
520 |a PurposeTo explore the inter-regional health index at the city level to contribute to the reduction of health inequalities.MethodsEmployed the health determinant model to select indicators for the urban health index of Shenzhen City. Utilized principal component analysis, the weights of these indicators are determined to construct the said health index. Subsequently, the global Moran's index and local Moran's index are utilized to investigate the geographical spatial distribution of the urban health index across various administrative districts within Shenzhen.ResultsThe level of urban health index in Shenzhen exhibits spatial clustering and demonstrates a positive spatial correlation (2017, Moran's I = 0.237; 2019, Moran's I = 0.226; 2021, Moran's I = 0.217). However, it is noted that this clustering displays a relatively low probability (90% confidence interval). Over the period from 2017 to 2019, this spatial clustering gradually diminishes, suggesting a narrowing of health inequality within economically developed urban areas.ConclusionOur study reveals the urban health index in a relatively high-income (Shenzhen) in a developing country. Certain spatially correlated areas in Shenzhen present opportunities for the government to address health disparities through regional connectivity. 
546 |a EN 
690 |a urban health index 
690 |a health inequalities 
690 |a spatial autocorrelation analysis 
690 |a highincome city 
690 |a geographic in information system (GIS) 
690 |a Moran's I 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Frontiers in Public Health, Vol 12 (2024) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fpubh.2024.1429143/full 
787 0 |n https://doaj.org/toc/2296-2565 
856 4 1 |u https://doaj.org/article/00b7c6a2da5c4ad091f5aa91777a3609  |z Connect to this object online.