In-Vitro Study of Osseointegration: Evaluating the Influence of Surface Modifications on Dental Implant Stability

Background: Osseointegration is critical for the success of dental implants. Surface modifications of dental implants play a crucial role in enhancing osseointegration and implant stability. This in-vitro study aims to evaluate the influence of various surface modifications on dental implant stabili...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammed G. Sghaireen (Author), Mohammad Khursheed Alam (Author), Ahmed Azhari Salih Mohamedeissa (Author), Jad Moriss Kazma (Author)
Format: Book
Published: Wolters Kluwer Medknow Publications, 2024-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Osseointegration is critical for the success of dental implants. Surface modifications of dental implants play a crucial role in enhancing osseointegration and implant stability. This in-vitro study aims to evaluate the influence of various surface modifications on dental implant stability. Materials and Methods: Dental implants with different surface modifications were prepared and subjected to in-vitro testing. Surface modifications included sandblasting, acid etching, and plasma spraying. Implant stability was assessed using resonance frequency analysis (RFA) and pull-out tests. Statistical analysis was performed to compare the stability of implants with different surface modifications. Results: The results showed that implants with sandblasted and acid-etched surfaces exhibited significantly higher stability compared with those with only a machined surface. The mean RFA values for sandblasted and acid-etched implants were 75 ± 5 and 80 ± 6, respectively, whereas machined implants recorded a mean RFA value of 60 ± 4. Similarly, pull-out tests demonstrated higher maximum tensile strengths for sandblasted and acid-etched implants compared with machined implants. Conclusion: Surface modifications, such as sandblasting and acid etching, significantly enhance dental implant stability in vitro. These modifications promote better osseointegration, which is crucial for the long-term success of dental implants in clinical practice.
Item Description:0976-4879
0975-7406
10.4103/jpbs.jpbs_328_24