Bone remodeling using a three-dimensional chitosan - hydroxyapatite scaffold seeded with hypoxic conditioned human amnion mesenchymal stem cells

Background: Bone regeneration studies involving the use of chitosan-hydroxyapatite (Ch-HA) scaffold seeded with human amnion mesenchymal stem cells (hAMSCs) have largely incorporated tissue engineering experiments. However, at the time of writing, the results of such investigations remain unclear. P...

Full description

Saved in:
Bibliographic Details
Main Author: Michael Josef Kridanto Kamadjaja (Author)
Format: Book
Published: Universitas Airlangga, 2021-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Bone regeneration studies involving the use of chitosan-hydroxyapatite (Ch-HA) scaffold seeded with human amnion mesenchymal stem cells (hAMSCs) have largely incorporated tissue engineering experiments. However, at the time of writing, the results of such investigations remain unclear. Purpose: The aim of this study was to determine the osteogenic differentiation of the scaffold Ch-HA that is seeded with hAMSCs in the regeneration of calvaria bone defect. Methods: Ch-HA scaffold of 5 mm diameter and 2 mm height was created by lyophilisation and desalination method. hAMSCs were cultured in hypoxia environment (5% oxygen, 10% carbon dioxide, 15% nitrogen) and seeded on the scaffold. Twenty male Wistar rat subjects (8 - 10 weeks, 200 - 250 grams) were randomly divided into two groups: control and hydroxyapatite scaffold (HAS). Defects (similar size to scaffold size) were created in the calvaria bone of the all-group subjects, but a scaffold was subsequently implanted only in the treatment group members. Control group left without treatment. After observation lasting 1 and 8 weeks, the subjects were examined histologically and immunohistochemically. Statistical analysis was done using ANOVA test. Results: Angiogenesis; expression of vascular endothelial growth factor; bone morphogenetic protein; RunX-2; alkaline phosphatase; type-1 collagen; osteocalcin and the area of new trabecular bone were all significantly greater in the HAS group compared to the control group. Conclusion: The three-dimensional Ch-HA scaffold seeded with hypoxic hAMSCs induced bone remodeling in calvaria defect according to the expression of the osteogenic and angiogenic marker.
Item Description:1978-3728
2442-9740
10.20473/j.djmkg.v54.i2.p68-73