Short-term PM2.5 and cardiovascular admissions in NY State: assessing sensitivity to exposure model choice

Abstract Background Air pollution health studies have been increasingly using prediction models for exposure assessment even in areas without monitoring stations. To date, most studies have assumed that a single exposure model is correct, but estimated effects may be sensitive to the choice of expos...

Full description

Saved in:
Bibliographic Details
Main Authors: Mike Z. He (Author), Vivian Do (Author), Siliang Liu (Author), Patrick L. Kinney (Author), Arlene M. Fiore (Author), Xiaomeng Jin (Author), Nicholas DeFelice (Author), Jianzhao Bi (Author), Yang Liu (Author), Tabassum Z. Insaf (Author), Marianthi-Anna Kioumourtzoglou (Author)
Format: Book
Published: BMC, 2021-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_09fc9fd5f45c451da2b55e9fef32729c
042 |a dc 
100 1 0 |a Mike Z. He  |e author 
700 1 0 |a Vivian Do  |e author 
700 1 0 |a Siliang Liu  |e author 
700 1 0 |a Patrick L. Kinney  |e author 
700 1 0 |a Arlene M. Fiore  |e author 
700 1 0 |a Xiaomeng Jin  |e author 
700 1 0 |a Nicholas DeFelice  |e author 
700 1 0 |a Jianzhao Bi  |e author 
700 1 0 |a Yang Liu  |e author 
700 1 0 |a Tabassum Z. Insaf  |e author 
700 1 0 |a Marianthi-Anna Kioumourtzoglou  |e author 
245 0 0 |a Short-term PM2.5 and cardiovascular admissions in NY State: assessing sensitivity to exposure model choice 
260 |b BMC,   |c 2021-08-01T00:00:00Z. 
500 |a 10.1186/s12940-021-00782-3 
500 |a 1476-069X 
520 |a Abstract Background Air pollution health studies have been increasingly using prediction models for exposure assessment even in areas without monitoring stations. To date, most studies have assumed that a single exposure model is correct, but estimated effects may be sensitive to the choice of exposure model. Methods We obtained county-level daily cardiovascular (CVD) admissions from the New York (NY) Statewide Planning and Resources Cooperative System (SPARCS) and four sets of fine particulate matter (PM2.5) spatio-temporal predictions (2002-2012). We employed overdispersed Poisson models to investigate the relationship between daily PM2.5 and CVD, adjusting for potential confounders, separately for each state-wide PM2.5 dataset. Results For all PM2.5 datasets, we observed positive associations between PM2.5 and CVD. Across the modeled exposure estimates, effect estimates ranged from 0.23% (95%CI: -0.06, 0.53%) to 0.88% (95%CI: 0.68, 1.08%) per 10 µg/m3 increase in daily PM2.5. We observed the highest estimates using monitored concentrations 0.96% (95%CI: 0.62, 1.30%) for the subset of counties where these data were available. Conclusions Effect estimates varied by a factor of almost four across methods to model exposures, likely due to varying degrees of exposure measurement error. Nonetheless, we observed a consistently harmful association between PM2.5 and CVD admissions, regardless of model choice. 
546 |a EN 
690 |a Particulate matter 
690 |a Exposure assessment 
690 |a Cardiovascular morbidity 
690 |a Industrial medicine. Industrial hygiene 
690 |a RC963-969 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Environmental Health, Vol 20, Iss 1, Pp 1-11 (2021) 
787 0 |n https://doi.org/10.1186/s12940-021-00782-3 
787 0 |n https://doaj.org/toc/1476-069X 
856 4 1 |u https://doaj.org/article/09fc9fd5f45c451da2b55e9fef32729c  |z Connect to this object online.