MiRNA-Drug Resistance Association Prediction Through the Attentive Multimodal Graph Convolutional Network
MiRNAs can regulate genes encoding specific proteins which are related to the efficacy of drugs, and predicting miRNA-drug resistance associations is of great importance. In this work, we propose an attentive multimodal graph convolution network method (AMMGC) to predict miRNA-drug resistance associ...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book |
Published: |
Frontiers Media S.A.,
2022-01-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MiRNAs can regulate genes encoding specific proteins which are related to the efficacy of drugs, and predicting miRNA-drug resistance associations is of great importance. In this work, we propose an attentive multimodal graph convolution network method (AMMGC) to predict miRNA-drug resistance associations. AMMGC learns the latent representations of drugs and miRNAs from four graph convolution sub-networks with distinctive combinations of features. Then, an attention neural network is employed to obtain attentive representations of drugs and miRNAs, and miRNA-drug resistance associations are predicted by the inner product of learned attentive representations. The computational experiments show that AMMGC outperforms other state-of-the-art methods and baseline methods, achieving the AUPR score of 0.2399 and the AUC score of 0.9467. The analysis demonstrates that leveraging multiple features of drugs and miRNAs can make a contribution to the miRNA-drug resistance association prediction. The usefulness of AMMGC is further validated by case studies. |
---|---|
Item Description: | 1663-9812 10.3389/fphar.2021.799108 |