Associations between Force-Time Related Single-Leg Counter Movement Jump Variables, Agility, and Linear Sprint in Competitive Youth Male Basketball Players

Background: Previous research has reported a strong relationship between vertical jumping, sprinting, and agility, as a reflection of lower-limb power. Unilateral analysis of this relationship has not yet been explored. This study primarily investigated the associations between single-leg countermov...

Full description

Saved in:
Bibliographic Details
Main Authors: Ömer Pamuk (Author), Yücel Makaracı (Author), Levent Ceylan (Author), Hamza Küçük (Author), Tuba Kızılet (Author), Tülay Ceylan (Author), Erdi Kaya (Author)
Format: Book
Published: MDPI AG, 2023-02-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Previous research has reported a strong relationship between vertical jumping, sprinting, and agility, as a reflection of lower-limb power. Unilateral analysis of this relationship has not yet been explored. This study primarily investigated the associations between single-leg countermovement jump (CMJ), sprint, and agility performances in youth basketball players. Methods: Thirty-five male basketball players from the youth category (age 15.06 ± 2.62 years, n = 32 right-limb dominant; n = 3 left-limb dominant) performed single-leg CMJ, 20 m sprint, and T-drill agility tests over two sessions. Force-time-related performance variables were measured using a single-leg CMJ test on a Kistler force plate. Results: Significant moderate to large negative correlations were observed between single-leg CMJ variables, 20 m sprint, and T-drill agility, except for mean force for both dominant and non-dominant leg measures (r = −0.384 to −0.705). Mean power and mean force were correlated with the physical characteristics of the athletes for both legs (r = −0.389 to −0.843). Flight time and jump height were identified as the best predictor variables for both sprint and agility time in the stepwise model (R<sup>2</sup> = 0.608 to 0.660). No statistical inter-limb differences were found during the single-leg CMJ test (<i>p</i> > 0.05). Conclusions: The study findings suggest that youth basketball players with greater single-leg jump output most likely have better sprint and agility performances. Thus, trainers and athletic performance coaches may include unilateral limb exercises in their training programs to enhance lower-limb explosive performance and reduce limb asymmetries.
Item Description:10.3390/children10030427
2227-9067