Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements

Background: While efforts have been made to differentiate fall risk in older adults using wearable devices and clinical methodologies, technologies are still infancy. We applied a decision tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical measurements to generate hig...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteurs: Junwoo Park (Auteur), Jongwon Choi (Auteur), Seyoung Lee (Auteur), Kitaek Lim (Auteur), Woochol Joseph Choi (Auteur)
Formaat: Boek
Gepubliceerd in: Korean Research Society of Physical Therapy, 2023-05-01T00:00:00Z.
Onderwerpen:
Online toegang:Connect to this object online.
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_0b5887fbe5984c9f9a151b3bfbb5986c
042 |a dc 
100 1 0 |a Junwoo Park  |e author 
700 1 0 |a Jongwon Choi  |e author 
700 1 0 |a Seyoung Lee  |e author 
700 1 0 |a Kitaek Lim  |e author 
700 1 0 |a Woochol Joseph Choi  |e author 
245 0 0 |a Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements 
260 |b Korean Research Society of Physical Therapy,   |c 2023-05-01T00:00:00Z. 
500 |a 10.12674/ptk.2023.30.2.102 
500 |a 1225-8962 
500 |a 2287-982X 
520 |a Background: While efforts have been made to differentiate fall risk in older adults using wearable devices and clinical methodologies, technologies are still infancy. We applied a decision tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical measurements to generate high performance classification models of fall risk of older adults. Objects: This study aims to develop a classification model of fall risk using IMU data and clinical measurements in older adults. Methods: Twenty-six older adults were assessed and categorized into high and low fall risk groups. IMU sensor data were obtained while walking from each group, and features were extracted to be used for a DT algorithm with the Gini index (DT1) and the Entropy index (DT2), which generated classification models to differentiate high and low fall risk groups. Model's performance was compared and presented with accuracy, sensitivity, and specificity. Results: Accuracy, sensitivity and specificity were 77.8%, 80.0%, and 66.7%, respectively, for DT1; and 72.2%, 91.7%, and 33.3%, respectively, for DT2. Conclusion: Our results suggest that the fall risk classification using IMU sensor data obtained during gait has potentials to be developed for practical use. Different machine learning techniques involving larger data set should be warranted for future research and development. 
546 |a EN 
690 |a classification 
690 |a decision tree 
690 |a fall risk 
690 |a gait 
690 |a inertial measurement unit sensor 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
690 |a Medicine (General) 
690 |a R5-920 
655 7 |a article  |2 local 
786 0 |n Physical Therapy Korea, Vol 30, Iss 2, Pp 102-109 (2023) 
787 0 |n https://doaj.org/toc/1225-8962 
787 0 |n https://doaj.org/toc/2287-982X 
856 4 1 |u https://doaj.org/article/0b5887fbe5984c9f9a151b3bfbb5986c  |z Connect to this object online.