Assessment of the Impact of Potential Tetracycline Exposure on the Phenotype of Aedes aegypti OX513A: Implications for Field Use.

Aedes aegypti is the primary vector of dengue fever, a viral disease which has an estimated incidence of 390 million infections annually. Conventional vector control methods have been unable to curb the transmission of the disease. We have previously reported a novel method of vector control using a...

Full description

Saved in:
Bibliographic Details
Main Authors: Zoe Curtis (Author), Kelly Matzen (Author), Marco Neira Oviedo (Author), Derric Nimmo (Author), Pamela Gray (Author), Peter Winskill (Author), Marco A F Locatelli (Author), Wilson F Jardim (Author), Simon Warner (Author), Luke Alphey (Author), Camilla Beech (Author)
Format: Book
Published: Public Library of Science (PLoS), 2015-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_0fb1e75f865047f6b55bf8b1c6c4c861
042 |a dc 
100 1 0 |a Zoe Curtis  |e author 
700 1 0 |a Kelly Matzen  |e author 
700 1 0 |a Marco Neira Oviedo  |e author 
700 1 0 |a Derric Nimmo  |e author 
700 1 0 |a Pamela Gray  |e author 
700 1 0 |a Peter Winskill  |e author 
700 1 0 |a Marco A F Locatelli  |e author 
700 1 0 |a Wilson F Jardim  |e author 
700 1 0 |a Simon Warner  |e author 
700 1 0 |a Luke Alphey  |e author 
700 1 0 |a Camilla Beech  |e author 
245 0 0 |a Assessment of the Impact of Potential Tetracycline Exposure on the Phenotype of Aedes aegypti OX513A: Implications for Field Use. 
260 |b Public Library of Science (PLoS),   |c 2015-08-01T00:00:00Z. 
500 |a 1935-2727 
500 |a 1935-2735 
500 |a 10.1371/journal.pntd.0003999 
520 |a Aedes aegypti is the primary vector of dengue fever, a viral disease which has an estimated incidence of 390 million infections annually. Conventional vector control methods have been unable to curb the transmission of the disease. We have previously reported a novel method of vector control using a tetracycline repressible self-limiting strain of Ae. aegypti OX513A which has achieved >90% suppression of wild populations.We investigated the impact of tetracycline and its analogues on the phenotype of OX513A from the perspective of possible routes and levels of environmental exposure. We determined the minimum concentration of tetracycline and its analogues that will allow an increased survivorship and found these to be greater than the maximum concentration of tetracyclines found in known Ae. aegypti breeding sites and their surrounding areas. Furthermore, we determined that OX513A parents fed tetracycline are unable to pre-load their progeny with sufficient antidote to increase their survivorship. Finally, we studied the changes in concentration of tetracycline in the mass production rearing water of OX513A and the developing insect.Together, these studies demonstrate that potential routes of exposure of OX513A individuals to tetracycline and its analogues in the environment are not expected to increase the survivorship of OX513A. 
546 |a EN 
690 |a Arctic medicine. Tropical medicine 
690 |a RC955-962 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n PLoS Neglected Tropical Diseases, Vol 9, Iss 8, p e0003999 (2015) 
787 0 |n http://europepmc.org/articles/PMC4535858?pdf=render 
787 0 |n https://doaj.org/toc/1935-2727 
787 0 |n https://doaj.org/toc/1935-2735 
856 4 1 |u https://doaj.org/article/0fb1e75f865047f6b55bf8b1c6c4c861  |z Connect to this object online.