Neuropsychotoxicity of Abused Drugs: Molecular and Neural Mechanisms of Neuropsychotoxicity Induced by Methamphetamine, 3,4-Methylenedioxymethamphetamine (Ecstasy), and 5-Methoxy-N,N-diisopropyltryptamine (Foxy)

Psychostimulants including amphetamines and cocaine, opioids including morphine, and some recreational drugs share the ability to cause drug dependence and addiction. Although these drugs of abuse primarily act on distinct molecular targets, such as monoamine transporters or receptors, they finally...

Full description

Saved in:
Bibliographic Details
Main Authors: Takayuki Nakagawa (Author), Shuji Kaneko (Author)
Format: Book
Published: Elsevier, 2008-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_11739cf320394dd3a6dce3c98a6ba66b
042 |a dc 
100 1 0 |a Takayuki Nakagawa  |e author 
700 1 0 |a Shuji Kaneko  |e author 
245 0 0 |a Neuropsychotoxicity of Abused Drugs: Molecular and Neural Mechanisms of Neuropsychotoxicity Induced by Methamphetamine, 3,4-Methylenedioxymethamphetamine (Ecstasy), and 5-Methoxy-N,N-diisopropyltryptamine (Foxy) 
260 |b Elsevier,   |c 2008-01-01T00:00:00Z. 
500 |a 1347-8613 
500 |a 10.1254/jphs.FM0070141 
520 |a Psychostimulants including amphetamines and cocaine, opioids including morphine, and some recreational drugs share the ability to cause drug dependence and addiction. Although these drugs of abuse primarily act on distinct molecular targets, such as monoamine transporters or receptors, they finally converge to common neural pathways. Several lines of evidence suggest that their chronic treatment leads to the enhancement of the mesocorticolimbic dopaminergic neurons from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and the medial prefrontal cortex (mPFC) and leads to abnormal glutamatergic function from the mPFC to the NAc and VTA. The neural adaptation of dopaminergic-glutamatergic system is considered to be critically implicated in neuropsychotoxic effects of these drugs of abuse. In addition, recent studies suggest that the serotonergic neurons from the raphe nuclei to limbic areas modulate the mesocorticolimbic dopaminergic-glutamatergic system and participate in the neuropsychotoxicity. In this review, our recent in vitro studies on the molecular targets and neural adaptation of methamphetamine, 3,4-methylenedioxymethanphetamine (MDMA, "ecstasy"), and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT, "foxy") using Xenopus oocytes, organotypic slice cultures of the mesocorticolimbic dopaminergic-glutamatergic system, and the raphe serotonergic system are introduced. Keywords:: drugs of abuse, methamphetamine, 3,4-methylenedioxymethanphetamine (MDMA, "ecstasy"), 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DiPT, "foxy"), dopaminergic-glutamatergic system, serotonin transporter 
546 |a EN 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Journal of Pharmacological Sciences, Vol 106, Iss 1, Pp 2-8 (2008) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S1347861319315294 
787 0 |n https://doaj.org/toc/1347-8613 
856 4 1 |u https://doaj.org/article/11739cf320394dd3a6dce3c98a6ba66b  |z Connect to this object online.