LncRNA-RP11 Modulates TGF-β1-Activated Radiation-Induced Lung Injury Through Downregulating microRNA-29a

Radiation-induced lung injury (RILI) is one of the most serious complications of thoracic radiation and TGF-β1 is a central regulator of RILI. However, the molecular mechanism underlying the fine tuning of TGF-β1 signaling in RILI has not been fully understood. In the current study, differentially e...

Full description

Saved in:
Bibliographic Details
Main Authors: Xi Yang (Author), Jianjiao Ni (Author), Yida Li (Author), Liqing Zou (Author), Tiantian Guo (Author), Yuan Li (Author), Li Chu (Author), Zhengfei Zhu (Author)
Format: Book
Published: SAGE Publishing, 2020-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radiation-induced lung injury (RILI) is one of the most serious complications of thoracic radiation and TGF-β1 is a central regulator of RILI. However, the molecular mechanism underlying the fine tuning of TGF-β1 signaling in RILI has not been fully understood. In the current study, differentially expressed long non-coding RNAs (LncRNAs) among human lung fibroblasts cell lines HFL-1 and WI-38 treated with TGF-β1, were identified by microarray and validated by real time PCR. LncRNA-RP11 was found to be the most increased LncRNA and it mediated the promotion of fibrogenic activity in human lung fibroblasts after TGF-β1 treatment. Bioinformatic analysis revealed that TGF-β1 may be associated with the component and structure of extracellular matrix in lung fibroblasts cells, and LncRNA-RP11 was predicted and confirmed to be a competing endogenous RNA by directly binding to miR-29a. Functional experiments investigating the biological role of LncRNA-RP11/miR-29a axis in RILI, were then carried out in human fibroblasts. The results showed that radiation promoted the expression of LncRNA-RP11, but regressed the expression of miR-29a. Furthermore, radiation elevated the expression of various common collagenic proteins, which could be abolished by overexpression of miR-29a.
Item Description:1559-3258
10.1177/1559325820949071