Enrofloxacin Dose Optimization for the Treatment of Colibacillosis in Broiler Chickens Using a Drinking Behaviour Pharmacokinetic Model

Enrofloxacin is frequently administered via drinking water for the treatment of colibacillosis in broiler chickens. However, the EMA/CVMP has urged to re-evaluate historically approved doses, especially for antimicrobials administered via drinking water. In response, the objectives of this study wer...

Full description

Saved in:
Bibliographic Details
Main Authors: Robin Temmerman (Author), Ludovic Pelligand (Author), Wim Schelstraete (Author), Gunther Antonissen (Author), An Garmyn (Author), Mathias Devreese (Author)
Format: Book
Published: MDPI AG, 2021-05-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enrofloxacin is frequently administered via drinking water for the treatment of colibacillosis in broiler chickens. However, the EMA/CVMP has urged to re-evaluate historically approved doses, especially for antimicrobials administered via drinking water. In response, the objectives of this study were two-fold. First, to evaluate the pharmacokinetics (PK) of enrofloxacin following IV, PO and drinking water administration. Second, to predict the efficacy of a range of doses in the drinking water for the treatment of APEC infections. For the first objective, PK parameters were estimated by fitting a one-compartmental model with a zero-order IV infusion and an oral absorption lag function to the simultaneously modelled IV and PO data. After fixing these parameter values, a drinking behaviour pharmacokinetic (DBPK) model was developed for the description and prediction of drinking water PK profiles by adding three model improvements (different diurnal and nocturnal drinking rates, inter-animal variability in water consumption and taking account of dose non-proportionality). The subsequent simulations and probability of target attainment (PTA) analysis predicted that a dose of 12.5 mg/kg/24 h is efficacious in treating colibacillosis with an MIC up to 0.125 μg/mL (ECOFF), whereas the currently registered dose (10 mg/kg/24 h) reaches a PTA of 66% at ECOFF.
Item Description:10.3390/antibiotics10050604
2079-6382