Improved Domain Adaptation Network Based on Wasserstein Distance for Motor Imagery EEG Classification
Motor Imagery (MI) paradigm is critical in neural rehabilitation and gaming. Advances in brain-computer interface (BCI) technology have facilitated the detection of MI from electroencephalogram (EEG). Previous studies have proposed various EEG-based classification algorithms to identify the MI, howe...
Shranjeno v:
Main Authors: | Qingshan She (Author), Tie Chen (Author), Feng Fang (Author), Jianhai Zhang (Author), Yunyuan Gao (Author), Yingchun Zhang (Author) |
---|---|
Format: | Knjiga |
Izdano: |
IEEE,
2023-01-01T00:00:00Z.
|
Teme: | |
Online dostop: | Connect to this object online. |
Oznake: |
Označite
Brez oznak, prvi označite!
|
Podobne knjige/članki
-
Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
od: Yuliang Ma, et al.
Izdano: (2023) -
An Approach for EEG Denoising Based on Wasserstein Generative Adversarial Network
od: Yuanzhe Dong, et al.
Izdano: (2023) -
EEG-Channel-Temporal-Spectral-Attention Correlation for Motor Imagery EEG Classification
od: Wei-Yen Hsu, et al.
Izdano: (2023) -
A Cross-Space CNN With Customized Characteristics for Motor Imagery EEG Classification
od: Ying Hu, et al.
Izdano: (2023) -
Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification
od: Shadi Sartipi, et al.
Izdano: (2024)