Geolocation prediction from STR genotyping: a pilot study in five geographically distinct global populations

Background Traditional CE-based STR profiles are highly useful for the purpose of individualisation. However, they do not give any additional information without the presence of the reference sample for comparison. Aim To assess the usability of STR-based genotypes for the prediction of an individua...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mansi Arora (Συγγραφέας), Hirak Ranjan Dash (Συγγραφέας)
Μορφή: Βιβλίο
Έκδοση: Taylor & Francis Group, 2023-01-01T00:00:00Z.
Θέματα:
Διαθέσιμο Online:Connect to this object online.
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_186f5ce19d514ee1ae87b9a906c82ea0
042 |a dc 
100 1 0 |a Mansi Arora  |e author 
700 1 0 |a Hirak Ranjan Dash  |e author 
245 0 0 |a Geolocation prediction from STR genotyping: a pilot study in five geographically distinct global populations 
260 |b Taylor & Francis Group,   |c 2023-01-01T00:00:00Z. 
500 |a 0301-4460 
500 |a 1464-5033 
500 |a 10.1080/03014460.2023.2217382 
520 |a Background Traditional CE-based STR profiles are highly useful for the purpose of individualisation. However, they do not give any additional information without the presence of the reference sample for comparison. Aim To assess the usability of STR-based genotypes for the prediction of an individual's geolocation. Subjects and Methods Genotype data from five geographically distinct populations, i.e. Caucasian, Hispanic, Asian, Estonian, and Bahrainian, were collected from the published literature. Results A significant difference (p < 0.05) in the observed genotypes was found between these populations. D1S1656 and SE33 showed substantial differences in their genotype frequencies across the tested populations. SE33, D12S391, D21S11, D19S433, D18S51, and D1S1656 were found to have the highest occurrence of "unique genotype's" in different populations. In addition, D12S391 and D13S317 exhibited distinct population-specific "most frequent genotypes." Conclusions Three different prediction models have been proposed for genotype to geolocation prediction, i.e. (i) use of unique genotypes of a population, (ii) use of the most frequent genotype, and (iii) a combinatorial approach of unique and most frequent genotypes. These models could aid the investigating agencies in cases where no reference sample is available for comparison of the profile. 
546 |a EN 
690 |a dna fingerprinting 
690 |a str 
690 |a genotype 
690 |a geolocation 
690 |a prediction model 
690 |a Biology (General) 
690 |a QH301-705.5 
690 |a Human anatomy 
690 |a QM1-695 
690 |a Physiology 
690 |a QP1-981 
655 7 |a article  |2 local 
786 0 |n Annals of Human Biology, Vol 50, Iss 1, Pp 274-281 (2023) 
787 0 |n http://dx.doi.org/10.1080/03014460.2023.2217382 
787 0 |n https://doaj.org/toc/0301-4460 
787 0 |n https://doaj.org/toc/1464-5033 
856 4 1 |u https://doaj.org/article/186f5ce19d514ee1ae87b9a906c82ea0  |z Connect to this object online.