Acellular Human Dermal Allograft Tuberoplasty Improved the Biomechanics in Mid-Range and Higher Abduction Angles in a Cadaveric Model of Massive Irreparable Rotator Cuff Tears

Purpose: To evaluate the biomechanical effects of acellular human dermal allograft tuberoplasty (AHDAT) in a cadaveric model of an irreparable supraspinatus + anterior one-half infraspinatus (stage III) rotator cuff tear. Methods: Eight cadaveric shoulders were tested at 20°, 40°, and 60° of glenohu...

Full description

Saved in:
Bibliographic Details
Main Authors: Ryan Lew, B.S (Author), Maxwell Park, M.D (Author), Ryan Beyer, B.S (Author), Michelle H. McGarry, M.S (Author), Manik Dham, M.S (Author), Oliver Hauck, M.S (Author), Gregory Adamson, M.D (Author), Thay Q. Lee, Ph.D (Author)
Format: Book
Published: Elsevier, 2024-02-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: To evaluate the biomechanical effects of acellular human dermal allograft tuberoplasty (AHDAT) in a cadaveric model of an irreparable supraspinatus + anterior one-half infraspinatus (stage III) rotator cuff tear. Methods: Eight cadaveric shoulders were tested at 20°, 40°, and 60° of glenohumeral abduction (AB) and 0°, 30°, 60°, and 90° of external rotation (ER). Superior humeral translation, acromiohumeral distance, and subacromial contact were quantified for 4 conditions: (1) intact, (2) stage III tear (entire supraspinatus and anterior one-half infraspinatus), (3) single-layer AHDAT, and (4) double-layer AHDAT. Results: Stage III tear significantly increased superior translation at 20° and 40° AB and all ER angles and at 60° AB/60° ER (P ≤ .045 vs intact). Compared to the stage III tear, the single-layer AHDAT significantly decreased superior translation at 60° AB/60° ER (P = .003), whereas the double-layer AHDAT significantly decreased superior translation at 40° and 60° AB at all ER angles except 60° AB/0° ER (P ≤ .028). The stage III tear significantly decreased acromiohumeral distance at 20° AB (P ≤ .003); both grafts increased acromiohumeral distance to intact levels (P ≥ .055 vs intact). Stage III tear increased subacromial contact pressure at 20° and 40° AB/0° and 30° ER and at 60° AB/30° and 60° ER (P ≤ .034). Both AHDAT groups decreased contact pressure at 40° AB/30° and 60° ER back to intact, whereas the double-layer AHDAT also decreased contact pressure at 20° AB/0° and 60° ER and 60° AB/30° ER (P ≥ .051 vs intact). Conclusions: Both single- and double-layer grafts for AHDAT improved superior translation, subacromial contact characteristics, and acromiohumeral distance after a stage III rotator cuff tear, with varying effectiveness due to the position-dependent nature of greater tuberosity to acromial contact with abduction. Clinical Relevance: The best treatment for massive or irreparable rotator cuff tears is a matter of concern. The results of this study will help determine whether an acellular human dermal allograft tuberoplasty is a potential treatment option worthy of further investigation.
Item Description:2666-061X
10.1016/j.asmr.2023.100868