Dextromethorphan Suppresses Lipopolysaccharide-Induced Epigenetic Histone Regulation in the Tumor Necrosis Factor-α Expression in Primary Rat Microglia

The activation of microglial cells plays an important role in the cascade of events leading to inflammation-mediated neurodegenerative disorders. Precision therapeutics require that adjunctively feasible drugs be found to prevent microglial cell activation and prevent inflammation-mediated neuronal...

Full description

Saved in:
Bibliographic Details
Main Authors: Yung-Ning Yang (Author), Yu-Chen S. H. Yang (Author), Pei-Ling Wu (Author), Chun-Hwa Yang (Author), Kuang-Che Kuo (Author), San-Nan Yang (Author)
Format: Book
Published: Hindawi Limited, 2020-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The activation of microglial cells plays an important role in the cascade of events leading to inflammation-mediated neurodegenerative disorders. Precision therapeutics require that adjunctively feasible drugs be found to prevent microglial cell activation and prevent inflammation-mediated neuronal injury. Dextromethorphan (DM) has been reported to possess neuroprotective effects in lipopolysaccharide- (LPS-) stimulated animals; however, it remains unclear whether epigenetic regulatory mechanisms in microglial cells are involved in such DM-mediated neuroprotective effects. In this study, DM simultaneously suppressed LPS-induced activation of tumor necrosis factor- (TNF-) α expression and subsequent caspase-3 signaling in primary microglial cells associated with notable morphological changes. Furthermore, therapeutic action sites of DM involved differential enhanced trimethylation of H3K4 modifications in the promoter region of tnf-α gene locus in primary microglial cells. In summary, DM may exert neuroprotective and anti-inflammatory effects through differential epigenetic histone modifications of TNF-α expression in microglial cells and might therefore raise the possibility of providing an adjunctively beneficial role for a tentative therapeutic strategy in neurodegenerative diseases resulting from inflammation.
Item Description:0962-9351
1466-1861
10.1155/2020/9694012