Theoretical and Experimental Models of Hormetic Fusion Tubulogenesis

Hormetic morphogens are morphogens such as transforming growth factor beta (TGF-β) in mammals and auxin in plants that induce hormetic responses. For example, in vitro, TGF-β stimulates and inhibits cell proliferation at low and high concentrations respectively. I developed a model of hormetic morph...

Full description

Saved in:
Bibliographic Details
Main Author: Egil Fosslien (Author)
Format: Book
Published: SAGE Publishing, 2013-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hormetic morphogens are morphogens such as transforming growth factor beta (TGF-β) in mammals and auxin in plants that induce hormetic responses. For example, in vitro, TGF-β stimulates and inhibits cell proliferation at low and high concentrations respectively. I developed a model of hormetic morphogen gradient control of the morphogenesis of the fusion of bilateral aortic precursors (Anlagen) that form the aorta during development; and validated the model with findings obtained by Daucus Carota fusion experiments. Theoretically, radial concentration gradients of a hormetic morphogen can form hollow (vessels) or solid ( Carota ) tubular structures. In arteries, blood flow and pressure can shape mural gradients and determine wall curvature and thereby vessel diameter. As Anlagen grow they form a temporary common wall that is subsequently removed, which results in fusion of the Anlagen lumina and an aorta with a lumen diameter that accommodates the combined blood flow to the iliac arteries. Carota seedlings grown close together exhibited proximally fused root cones, serial cross-sections of which exhibited coaxial fusion patterns that closely resembled the predicted vascular fusion patterns, thus validating a role for hormesis and hormetic morphogens in the morphogenesis of the aorta and possibly the morphogenesis of other human midline structures.
Item Description:1559-3258
10.2203/dose-response.12-004.Fosslien