Stem Cells as In Vitro Model of Parkinson's Disease

Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD) has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating...

Full description

Saved in:
Bibliographic Details
Main Authors: Patricia L. Martínez-Morales (Author), Isabel Liste (Author)
Format: Book
Published: Hindawi Limited, 2012-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_216c5d6d74b04bb8b5dba3e21d3a8855
042 |a dc 
100 1 0 |a Patricia L. Martínez-Morales  |e author 
700 1 0 |a Isabel Liste  |e author 
245 0 0 |a Stem Cells as In Vitro Model of Parkinson's Disease 
260 |b Hindawi Limited,   |c 2012-01-01T00:00:00Z. 
500 |a 1687-966X 
500 |a 1687-9678 
500 |a 10.1155/2012/980941 
520 |a Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD) has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating PD. The ability to generate induced pluripotent stem cells (iPSCs) from PD patients and a refined capacity to differentiate these iPSCs into DA neurons, the relevant disease cell type, promises a new paradigm in drug development that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSC that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSC can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling PD "in a dish" and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets, and enhance the probability of clinical success of new drugs. 
546 |a EN 
690 |a Internal medicine 
690 |a RC31-1245 
655 7 |a article  |2 local 
786 0 |n Stem Cells International, Vol 2012 (2012) 
787 0 |n http://dx.doi.org/10.1155/2012/980941 
787 0 |n https://doaj.org/toc/1687-966X 
787 0 |n https://doaj.org/toc/1687-9678 
856 4 1 |u https://doaj.org/article/216c5d6d74b04bb8b5dba3e21d3a8855  |z Connect to this object online.