Long Non-coding RNA ITIH4-AS1 Accelerates the Proliferation and Metastasis of Colorectal Cancer by Activating JAK/STAT3 Signaling

Accumulating evidence has uncovered long non-coding RNAs (lncRNAs) as central regulators in the pathogenesis of diverse human cancers including colorectal cancer (CRC). The present study discovered that a novel lncRNA ITIH4 antisense RNA 1 (ITHI4-AS1) was frequently under-expressed in most normal hu...

Full description

Saved in:
Bibliographic Details
Main Authors: Chaojie Liang (Author), Tuanjie Zhao (Author), Haijun Li (Author), Fucheng He (Author), Xin Zhao (Author), Yuan Zhang (Author), Xi Chu (Author), Chunlan Hua (Author), Yunhui Qu (Author), Yu Duan (Author), Liang Ming (Author), Jiansheng Guo (Author)
Format: Book
Published: Elsevier, 2019-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accumulating evidence has uncovered long non-coding RNAs (lncRNAs) as central regulators in the pathogenesis of diverse human cancers including colorectal cancer (CRC). The present study discovered that a novel lncRNA ITIH4 antisense RNA 1 (ITHI4-AS1) was frequently under-expressed in most normal human tissues, including colon tissues. Therefore, we aimed to investigate the role of ITHI4-AS1 in CRC. Interestingly, a significant overexpression of ITIH4-AS1 was observed in CRC cell lines relative to normal NCM460 cells. Also, we investigated the facilitating role of ITIH4-AS1 in CRC cell growth and metastasis both in vitro and in vivo. Additionally, we explained that ITIH4-AS1 upregulation in CRC was attributed to downregulation or even depletion of RE1 silencing transcription factor (REST), a presently identified transcriptional repressor for ITIH4-AS1. Meanwhile, the contribution of ITIH4-AS1 to CRC development was validated to rely on the activation of the JAK/STAT3 pathway. More importantly, we verified that FUS interacted with both ITIH4-AS1 and STAT3, and that ITIH4-AS1 evoked nuclear translocation of phosphorylated (p)-STAT3 in CRC through recruiting FUS. In summary, our findings unveiled for the first time that REST downregulation-enhanced ITIH4-AS1 exerts pro-tumor functions in CRC through FUS-dependent activation of the JAK/STAT3 pathway, implying that targeting ITIH4-AS1 may be a novel effective strategy for CRC therapy. Keywords: ITIH4-AS1, colorectal cancer, REST, FUS, STAT3
Item Description:2162-2531
10.1016/j.omtn.2019.08.009