Effects of individuality, education, and image on visual attention: Analyzing eye-tracking data using machine learning
Machine learning, particularly classification algorithms, constructs mathematical models from labeled data that can predict labels for new data. Using its capability to identify distinguishing patterns among multi-dimensional data, we investigated the impact of three factors on the observation of ar...
Gardado en:
Main Authors: | Sangwon Lee (Author), Yongha Hwang (Author), Yan Jin (Author), Sihyeong Ahn (Author), Jaewan Park (Author) |
---|---|
Formato: | Libro |
Publicado: |
Bern Open Publishing,
2019-07-01T00:00:00Z.
|
Subjects: | |
Acceso en liña: | Connect to this object online. |
Tags: |
Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
|
Títulos similares
-
Collecting and Analyzing Eye-Tracking Data in Outdoor Environments
por: Karen M. Evans, et al.
Publicado: (2012) -
Provider Visual Attention Correlates With the Quality of Pediatric Resuscitation: An Observational Eye-Tracking Study
por: Peter Gröpel, et al.
Publicado: (2022) -
Visual Multi-Metric Grouping of Eye-Tracking Data
por: Ayush Kumar, et al.
Publicado: (2018) -
Object permanence and the development of attention capacity in preterm and term infants: an eye-tracking study
por: Hokyoung Ryu, et al.
Publicado: (2017) -
Mouse cursor movement and eye tracking data as an indicator of pathologists' attention when viewing digital whole slide images
por: Vignesh Raghunath, et al.
Publicado: (2012)