HIV survey in Mozambique: analysis with simultaneous model in contrast to separate hierarchical models

Abstract Background The analysis of correlated responses obtained one at a time in survey data is not as informative or as useful as modeling them simultaneously. Simultaneous modeling allows for the opportunity to evaluate the system in a more pragmatic form rather than to allow for responses that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Di Fang (Autor), Anqi Lang (Autor), Jeffrey R. Wilson (Autor)
Formato: Libro
Publicado: BMC, 2020-07-01T00:00:00Z.
Materias:
Acceso en línea:Connect to this object online.
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_25f1ae71d01c4f07926b10e3d1a123bb
042 |a dc 
100 1 0 |a Di Fang  |e author 
700 1 0 |a Anqi Lang  |e author 
700 1 0 |a Jeffrey R. Wilson  |e author 
245 0 0 |a HIV survey in Mozambique: analysis with simultaneous model in contrast to separate hierarchical models 
260 |b BMC,   |c 2020-07-01T00:00:00Z. 
500 |a 10.1186/s13690-020-00453-8 
500 |a 2049-3258 
520 |a Abstract Background The analysis of correlated responses obtained one at a time in survey data is not as informative or as useful as modeling them simultaneously. Simultaneous modeling allows for the opportunity to evaluate the system in a more pragmatic form rather than to allow for responses that assumedly originated in isolation. Methods This research uses the Mozambique National Survey data to demonstrate the benefits of simultaneous modeling on blood test results, knowledge of HIV/AIDS, and awareness of an HIV/AIDS campaign. This simultaneous modeling also addresses the correlation inherent due to the hierarchical structure in the data collection. Results Employment and self-perceived risk of HIV/AIDS have different impact on blood test, awareness of an HIV/AIDS campaign, and knowledge of HIV/AIDS when examined simultaneously as opposed to separate modeling. Conclusion Simultaneous modeling of correlated responses improves the reliability of the estimates. More importantly, it provides an opportunity to engage in cost-saving decisions when designing future surveys and make better health policies. 
546 |a EN 
690 |a Shared-parameter model 
690 |a Correlated 
690 |a Intraclass correlation 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Archives of Public Health, Vol 78, Iss 1, Pp 1-7 (2020) 
787 0 |n http://link.springer.com/article/10.1186/s13690-020-00453-8 
787 0 |n https://doaj.org/toc/2049-3258 
856 4 1 |u https://doaj.org/article/25f1ae71d01c4f07926b10e3d1a123bb  |z Connect to this object online.